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Resumo. Este trabalho propée a classificacdo multimodal de aves em ter-
ritorio brasileiro, utilizando dados de ciéncia cidadd. A pesquisa revelou que a
distribuicdo dos registros é desigual entre os estados, refletindo a dependéncia
da distribuicdo geogrdfica dos colaboradores. Observou-se que a acurdcia dos
modelos ndo demonstrou forte correlacdo com a quantidade de amostras. O
desempenho variou significativamente com a modalidade de entrada. Os classi-
ficadores atingiram médias de acurdcia de 0,8550 para dados tabulares, 0,3458
para imagens e 0,8606 para a combinacdo das modalidades. A concatenacdo
dos embeddings demonstrou um ganho de acurdcia, criando um espaco de ca-
racteristicas hibrido. Este espago combinado a estabilidade dos metadados ta-
bulares com a expressividade das imagens, resultando em menor sensibilidade
a escolha do algoritmo de classificacdo. Em geral, o estudo estabelece uma
baseline para a classificacdo multimodal de aves no Brasil e oferece subsidios
para a aplicacdo de diferentes arquiteturas em problemas de Classificacdo Vi-
sual Fina.

1. INTRODUCAO

A conversao de habitats naturais em mosaicos de uso antropico, como agricultura e pas-
tagens, afeta a riqueza de espécies, especialmente na Amazonia, onde a agricultura in-
dustrial € uma ameaca a biodiversidade [1, 2]. O conhecimento ornitol6gico no Brasil
vem sendo impulsionado por iniciativas de ciéncia cidada, com portais como o WikiAves
utilizando fotografias como base taxondmica avidria [3]. A identificacdo automatizada
de espécies é fundamental para a conservagdo ecoldgica, especialmente em cendrios de
perda de biodiversidade [4,|5]. Este trabalho propde a classificacdo multimodal de aves no
territério nacional utilizando imagens e metadados geo-temporais, fundamentada na pre-
missa de que a fusdo de informacdes contextuais e visuais pode aprimorar a precisao [6].
Embora a ciéncia cidada aumente a disponibilidade de amostras, os experimentos ainda
dependem da distribuicdo geografica dos colaboradores.



2. DESENVOLVIMENTO

O estudo adota uma abordagem quantitativa e experimental, baseada em arquiteturas
Transformer. O Transformer, utilizando o mecanismo de Atencao, supera limitagdes de
paralelizacdo das Redes Neurais Recorrentes (RNNs) [[7, 8]. Em visdo computacional, o
Vision Transformer (ViT) adapta essa ldgica para modelar relagdes globais entre regides
de imagem [9, 10]. Para Classificacao Visual Fina de Espécies (FGVC), o SwinFG ¢€ utili-
zado no branch de imagens devido ao seu mecanismo de janelas deslocadas, que restringe
a Autoaten¢do a regides menores enquanto captura relacdes de longo alcance [11]. Para
os metadados tabulares, o TabTransformer foi empregado, o qual converte embeddings
paramétricos em embeddings contextuais robustos, buscando aproximar o desempenho
de modelos baseados em arvores, como o Random Forest [[12, [13]].

A metodologia utiliza uma estrutura dual-branch: os embeddings extraidos pelo
SwinFG e TabTransformer sdo avaliados em trés cenarios: Tabular Isolado, Imagem Iso-
lada e Concatenado (fusdo). O conjunto de dados foi limitado as cinco espécies de maior
ocorréncia por estado para mitigar o desbalanceamento. Para a classifica¢do final (downs-
tream), foram testados diversos modelos, incluindo k-Nearest Neighbors (k-NN) [[14],
Random Forest [13]], Support Vector Machine (SVM) [15], Logistic Regression (Lo-
gReg) [16] e XGBoost [[17]. A métrica de avaliagdo utilizada em todos os cenarios foi
a Acurdcia.

3. CONSIDERACOES FINAIS

Os resultados demonstram que a quantidade de amostras nao apresentou forte correlagao
com a acurdcia. A maior variagdo de desempenho foi observada no dominio da Imagem.
A acuricia média obtida foi de 0,8550 para a modalidade tabular, 0,3458 para a ima-
gem e 0,8606 para a combinagdo das modalidades [13,12]. A modalidade tabular, por si
s0, demonstrou alta estabilidade e consisténcia, enquanto a modalidade Imagem isolada
apresentou o pior desempenho. A concatenacdo dos embeddings demonstrou ganho de
acurdcia em diversos cendrios, criando um espaco de caracteristicas hibrido que combina
a estabilidade dos dados tabulares com a expressividade das imagens. Essa fusdo mul-
timodal mitigou a sensibilidade a escolha do algoritmo classificador downstream, apre-
sentando maior robustez preditiva. A acurécia do classificador de imagem apresentou
correlagdo negativa com a diversidade de espécies e positiva com a dominancia de poucas
espécies. O trabalho estabelece uma baseline para a classificagdo multimodal de aves no
Brasil e fornece subsidios para a aplicacdao de diferentes arquiteturas em problemas de
Classificacao Visual Fina [11]].
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