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1. Introdução
Este trabalho aborda as limitações inerentes à inspeção de qualidade de maçãs,
contextualizando-as frente às normas estabelecidas pelo governo brasileiro na Instrução
Normativa N° 5/2006 [1]. Diante dos recentes avanços em Visão Computacional, propõe-
se a utilização de Redes Neurais Convolucionais (CNNs), dada a sua robustez na extração
de caracterı́sticas. Especificamente, adota-se o modelo Mask R-CNN, reconhecido por
sua eficácia na detecção de objetos e segmentação pixel a pixel, visando a identificação
precisa de danos fı́sicos nos frutos para otimizar o processo de controle de qualidade.

2. Fundamentação Teórica
A fundamentação teórica revisita os conceitos de Redes Neurais Artificiais (RNAs),
traçando uma linha evolutiva desde o Perceptron de Rosenblatt [2] até os avanços sub-
sequentes. Destaca-se a transição para os Multi-Layer Perceptrons (MLPs), que solucio-
naram a incapacidade de separar dados não-lineares, uma limitação crı́tica dos modelos
iniciais, conforme discutido por Rumelhart et al. [3]. Entretanto, o trabalho ressalta as
limitações das MLPs quanto à escalabilidade, visto que o aumento da dimensão dos da-
dos de entrada acarreta um crescimento excessivo no número de pesos a serem ajustados,
inviabilizando o treinamento eficiente.

Como solução para as limitações de processamento das arquiteturas anteriores,
consolidaram-se as Redes Neurais Convolucionais (CNNs). Diferentemente dos mode-
los clássicos, as CNNs preservam a estrutura espacial dos dados de entrada (formato de
matriz), o que as torna ideais para o processamento de imagens [4].

A principal inovação reside nas camadas de convolução, responsáveis pela
extração automática e hierárquica de caracterı́sticas. Isso permite uma redução drástica
na quantidade de parâmetros a serem aprendidos em comparação a uma rede totalmente
conectada, tornando o treinamento computacionalmente viável e mais rápido [5]. Ao fi-
nal do processo, os mapas de caracterı́sticas gerados pelas convoluções são vetorizados e
inseridos em camadas densas (totalmente conectadas) para realizar a classificação final.

O trabalho aprofunda-se na análise das backbones, estruturas responsáveis pela
extração de mapas de caracterı́sticas robustos. Discute-se o desafio inerente ao treina-
mento de redes profundas, especificamente o problema do desvanecimento do gradiente
(vanishing gradient), que degrada a precisão do modelo, e a solução proposta com as
Redes Residuais.

Sequencialmente, o trabalho descreve a evolução das arquiteturas de detecção de
objetos baseadas em regiões. Inicia-se com o R-CNN de Girshick et al. [6], pioneiro na



aplicação de CNNs sobre propostas de regiões para classificação. Avança-se para o Fast
R-CNN de Girshick et al. [7], que otimizou o desempenho computacional ao processar
a imagem inteira de uma única vez, gerando um mapa de caracterı́sticas compartilhado,
diferentemente de sua antecessora que processava cada região individualmente.

A evolução seguiu com o Faster R-CNN de Ren et al. [8], que introduziu a Region
Proposal Network (RPN), integrando a geração de propostas à própria rede neural. Por
fim, apresenta-se o Mask R-CNN de He et al. [9], modelo central deste estudo, que
estende essa arquitetura ao adicionar um ramo paralelo para a segmentação pixel a pixel
e aprimora a preservação espacial através da camada RoI Align.

Na revisão de trabalhos correlatos, destacam-se quatro pesquisas principais que
corroboram a abordagem deste estudo. Inicialmente, analisa-se o trabalho de Hou et al.
[10], que empregou a Faster R-CNN para a detecção de danos sutis por impacto em maçãs.
O autor utilizou imagens hiperspectrais, evidenciando a complexidade da detecção desses
danos em imagens convencionais (RGB). Contudo, o estudo limitou-se à detecção via
bounding boxes, sem realizar a segmentação pixel a pixel da área afetada.

Em contrapartida, o trabalho de El Akrouchi et al. [11] enfatiza a robustez da Mask
R-CNN em cenários complexos, aplicando o modelo para detectar, segmentar e contabi-
lizar panı́culas de quinoa. Vale ressaltar que foram utilizadas fotografias comuns (RGB),
demonstrando a viabilidade dessa modalidade de imagem. O estudo comparou três back-
bones distintos: ResNet-50, ResNet-101 e EfficientNet-B7, obtendo bons resultados com
a ResNet-101, arquitetura também adotada nesta pesquisa.

Na sequência, destaca-se o estudo de Osorio et al. [12], que também utiliza a
Mask R-CNN, mas com foco na técnica de Transfer Learning utilizando pesos do dataset
COCO [13]. A pesquisa comprova a eficácia do treinamento em datasets pequenos (sendo
o maior com 327 imagens) e estabelece três conclusões vitais: o uso de Transfer Learning
melhora os resultados finais; é possı́vel obter boa performance mesmo sem aumento de
dados (Data Augmentation); e a qualidade das anotações das máscaras impacta mais o
desempenho do que a quantidade bruta de dados.

Por fim, examina-se o trabalho de Zhang et al. [14], que aplica a Mask R-CNN
para fenotipagem de alfaces. Diferentemente do anterior, este estudo destaca o uso in-
tensivo de Data Augmentation para contornar a escassez de dados, aplicando variadas
transformações nas imagens. Além disso, utilizou-se a validação cruzada K-fold Cross-
Validation (com k = 5), método que consiste em dividir o conjunto de dados em k partes,
utilizando k−1 partes para treino e 1 parte para teste em rodadas alternadas, maximizando
o uso dos dados e evitando vieses na avaliação.

3. Método de Pesquisa
A metodologia de pesquisa fundamentou-se na aquisição de imagens digitais por meio de
fotografia, compondo o acervo inicial do estudo. As imagens brutas foram submetidas a
uma etapa de pré-processamento, consistindo no redimensionamento das imagens.

O dataset original foi constituı́do por 300 imagens. O processo de anotação e
segmentação das regiões de interesse (ground truth) foi realizado manualmente utilizando
uma ferramenta própria no formato VGG Image Annotator (VIA), definindo-se uma classe
única para a identificação dos danos fı́sicos.



Visando aumentar a capacidade de generalização do modelo e mitigar o risco de
overfitting, aplicou-se a técnica de Data Augmentation de forma hı́brida. O processo com-
binou variações manuais durante a captura fotográfica e uma expansão artificial gerada via
algoritmo, que executou operações geométricas de rotação e inversão (espelhamento) nas
imagens. Esse procedimento resultou em uma expansão de 5× sobre o conjunto original,
totalizando um dataset final de 1800 imagens. Para a avaliação rigorosa do desempenho
do modelo, adotou-se o método de validação cruzada K-fold Cross-Validation, assegu-
rando que todos os dados fossem utilizados tanto para treino quanto para validação em
diferentes iterações.

Para a configuração do treinamento, adotou-se uma taxa de aprendizado (learning
rate) dinâmica, estabelecida em 0.001 tanto para as etapas com congelamento de camadas
(freezing) quanto para o ajuste fino sem congelamento. A inicialização dos modelos utili-
zou a técnica de Transfer Learning, carregando pesos pré-treinados no dataset COCO.

A função de perda global (L) utilizada para monitorar o desempenho é multitarefa,
composta pela somatória das perdas da Region Proposal Network (RPN) e das cabeças
da Mask R-CNN (classificação, regressão da caixa delimitadora e máscara), conforme
expresso na Equação 1:

L = LRPNcls
+ LRPNbox

+ LMRCNNcls
+ LMRCNNbox

+ LMRCNNmask
(1)

Aqui está a redação final para a seção de métricas, removendo as imagens e man-
tendo o rigor acadêmico com as equações.

Na seção de métricas de avaliação, definiram-se três indicadores principais para
mensurar a eficácia do modelo. Primeiramente, utilizou-se a Average Precision (AP) para
analisar o desempenho global sobre a curva de Precisão x Revocação (Precision-Recall).
Essa métrica avalia a capacidade do modelo em realizar detecções corretas, minimizando
a ocorrência de falsos positivos, ao mesmo tempo em que maximiza a detecção de todos
os danos presentes na imagem (alta revocação).

Para quantificar a qualidade da segmentação espacial, adotou-se o Intersection
over Union (IoU). Esta métrica determina a porcentagem de sobreposição correta entre a
máscara predita pelo modelo e a anotação real (ground truth). O cálculo é dado pela razão
entre a área de interseção e a área de união das duas regiões, conforme a Equação 2:

IoU =
Área da Interseção

Área da União
=

Apred ∩ Areal

Apred ∪ Areal

(2)

Por fim, aplicou-se o F1-Score, uma métrica que fornece a média harmônica entre
a Precisão e a Revocação. O F1-Score é essencial para indicar o equilı́brio do sistema,
penalizando modelos que possuem uma dessas métricas muito baixa em detrimento da
outra, conforme expresso na Equação 3:

F1 = 2 · Precisão · Revocação
Precisão + Revocação

(3)



4. Experimentos
Os experimentos foram estruturados em três etapas distintas para avaliar diferentes es-
tratégias de treinamento. No primeiro experimento, aplicou-se a validação cruzada K-
fold Cross-Validation com k = 5, utilizando pesos pré-treinados no dataset COCO. Nesta
etapa, aplicou-se o congelamento (freezing) de todas as camadas de extração de carac-
terı́sticas da rede, mantendo apenas a última camada (cabeça de predição) treinável. O
objetivo foi verificar se o ajuste restrito exclusivamente à camada final seria suficiente
para que o modelo detectasse os danos fı́sicos com precisão.

O segundo experimento replicou a metodologia anterior, com a exceção de que o
treinamento foi realizado com o descongelamento total da rede (unfreezing). Essa etapa
visou validar se o retreinamento de todas as camadas apresentaria ganho ou degradação
de desempenho em comparação à abordagem com freezing.

Por fim, o terceiro experimento foi conduzido de forma isolada utilizando o data-
set expandido (aumentado), com todas as camadas descongeladas (unfreezing). Manteve-
se a taxa de aprendizado (learning rate) em 0.001, considerando que as etapas por época
foram configuradas para percorrer a totalidade das imagens. Essa estratégia foi adotada
para adequar o tempo de convergência ao volume superior de dados. Ressalta-se que, di-
ferentemente dos experimentos anteriores, neste experimento não se aplicou a validação
cruzada K-fold Cross-Validation, devido ao custo computacional inviável para o escopo
desse trabalho.

5. Resultados
Os resultados experimentais demonstraram comportamentos distintos entre as estratégias
adotadas. No primeiro experimento (freezing), observou-se uma boa convergência durante
o treinamento, contudo, a etapa de validação apresentou valores de perda total relativa-
mente altos (1.5). Ao realizar a decomposição da função de perda, identificou-se que a
principal responsável por essa elevação foi a perda da máscara (Lmask), que aumentou
gradativamente ao longo das épocas.

Em contrapartida, as demais perdas (classificação e bounding box) não convergi-
ram totalmente, mas estabilizaram-se. Isso indica que o modelo manteve a capacidade de
localizar a região do dano corretamente, porém sua capacidade de segmentação pixel a
pixel degradou-se conforme o avanço do treinamento.

O segundo experimento (unfreezing) apresentou um comportamento de curva se-
melhante. Embora os valores absolutos de perda na validação, tenham se mostrado ligei-
ramente inferiores ( 1.25) em comparação ao primeiro cenário, a tendência de degradação
na segmentação persistiu. Por fim, o terceiro experimento (com dataset aumentado) apre-
sentou resultados significativamente superiores. A convergência no treinamento ocor-
reu de forma gradual, similar às etapas anteriores, porém o destaque residiu na perda de
validação, que se manteve abaixo de 0.8. Comparativamente, isso representa uma me-
lhoria de aproximadamente 53,3% em relação ao experimento com freezing (1.5) e uma
redução considerável frente ao experimento sem freezing (1.25). Além da redução glo-
bal, o comportamento dos componentes da perda alterou-se: pela primeira vez, a perda
da máscara (Lmask) convergiu gradualmente e permaneceu reduzida até as épocas finais,
evidenciando que o aumento de dados foi crucial para que o modelo generalizasse corre-
tamente a tarefa de segmentação.



Corroborando a análise do comportamento da função de perda, os resultados das
métricas de avaliação quantitativa evidenciam a evolução da capacidade do modelo, con-
forme detalhado na Tabela 1. O experimento com Freezing estabeleceu a linha de base do
estudo. Ao aplicar o descongelamento total da rede (Unfreezing), observou-se um ganho
de desempenho geral nas métricas avaliadas em comparação à etapa inicial.

Contudo, foi o modelo treinado com o Dataset Expandido que apresentou os re-
sultados mais expressivos, confirmando a hipótese de que o aumento de dados é crucial
para a generalização da rede. Diferentemente dos cenários anteriores, nesta etapa todas
as métricas atingiram seus valores máximos. Destaca-se o salto significativo na Average
Precision (AP) e no F1-Score, indicando que a rede tornou-se muito mais robusta e equi-
librada na detecção dos danos. O mIoU também apresentou uma evolução consistente em
relação aos modelos de freezing e unfreezing, validando que a segmentação da área do
dano foi refinada concomitantemente à melhora na detecção global.

Tabela 1. Comparativo dos resultados máximos obtidos nas métricas de
avaliação (AP, F1 e mIoU) para os três cenários experimentais.

Experimento AP@50 F1-Score@50 mIoU
Freezing 0.6953 0.7227 0.6129
Unfreezing 0.7737 0.7899 0.6441
Expanded 0.8766 0.8767 0.7059

Nota: Os valores em negrito indicam o melhor desempenho em cada métrica.

6. Conclusão

Este estudo cumpriu o objetivo de avaliar o desempenho técnico e a utilidade prática da
arquitetura Mask R-CNN na segmentação de instâncias de danos fı́sicos. A investigação
confirmou que o modelo é capaz não apenas de localizar, mas de delinear a área das
avarias, requisito essencial para a mensuração de área exigida pelas normas regulatórias.

Os experimentos demonstraram que a aplicação exclusiva de Transfer Learning
em datasets reduzidos foi insuficiente para a precisão da máscara, resultando em di-
vergência na função de perda de segmentação. A estabilização do modelo ocorreu apenas
com a introdução do aumento de dados (Data Augmentation). Com a variabilidade espa-
cial ampliada, a rede aprendeu a definir as bordas dos defeitos com exatidão, alcançando
métricas superiores a 0.87 em precisão (AP) e F1-Score.

Portanto, a combinação da arquitetura Mask R-CNN com a expansão de dados
consolida-se como uma ferramenta eficaz para a segmentação de danos em maçãs, ofere-
cendo uma alternativa robusta para auxiliar no controle de qualidade.
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