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1. Introducao

Este trabalho aborda as limitacdes inerentes a inspe¢ao de qualidade de macas,
contextualizando-as frente as normas estabelecidas pelo governo brasileiro na Instru¢ao
Normativa N° 5/2006 [[1]. Diante dos recentes avancos em Visao Computacional, propde-
se a utilizacdao de Redes Neurais Convolucionais (CNNs), dada a sua robustez na extra¢ao
de caracteristicas. Especificamente, adota-se o modelo Mask R-CNN, reconhecido por
sua eficdcia na deteccdo de objetos e segmentacdo pixel a pixel, visando a identificacdo
precisa de danos fisicos nos frutos para otimizar o processo de controle de qualidade.

2. Fundamentacao Teorica

A fundamentacdo tedrica revisita os conceitos de Redes Neurais Artificiais (RNAs),
tracando uma linha evolutiva desde o Perceptron de Rosenblatt [2] até os avangos sub-
sequentes. Destaca-se a transicao para os Multi-Layer Perceptrons (MLPs), que solucio-
naram a incapacidade de separar dados ndo-lineares, uma limitagdo critica dos modelos
iniciais, conforme discutido por Rumelhart et al. [3]. Entretanto, o trabalho ressalta as
limitagdes das MLPs quanto a escalabilidade, visto que o aumento da dimensdo dos da-
dos de entrada acarreta um crescimento excessivo no nimero de pesos a serem ajustados,
inviabilizando o treinamento eficiente.

Como solugdo para as limitagdes de processamento das arquiteturas anteriores,
consolidaram-se as Redes Neurais Convolucionais (CNNs). Diferentemente dos mode-
los classicos, as CNNs preservam a estrutura espacial dos dados de entrada (formato de
matriz), o que as torna ideais para o processamento de imagens [4].

A principal inovagao reside nas camadas de convolugdo, responsdveis pela
extragdo automatica e hierdrquica de caracteristicas. Isso permite uma reducdo dréstica
na quantidade de parametros a serem aprendidos em comparagdo a uma rede totalmente
conectada, tornando o treinamento computacionalmente vidvel e mais rapido [Sl]. Ao fi-
nal do processo, os mapas de caracteristicas gerados pelas convolugdes sao vetorizados e
inseridos em camadas densas (totalmente conectadas) para realizar a classificacdo final.

O trabalho aprofunda-se na andlise das backbones, estruturas responsdveis pela
extragdo de mapas de caracteristicas robustos. Discute-se o desafio inerente ao treina-
mento de redes profundas, especificamente o problema do desvanecimento do gradiente
(vanishing gradient), que degrada a precisdo do modelo, e a solu¢do proposta com as
Redes Residuais.

Sequencialmente, o trabalho descreve a evolucdo das arquiteturas de detecg¢ao de
objetos baseadas em regides. Inicia-se com o R-CNN de Girshick et al. [6]], pioneiro na



aplicacao de CNNs sobre propostas de regides para classificacdo. Avanca-se para o Fast
R-CNN de Girshick et al. [7]], que otimizou o desempenho computacional ao processar
a imagem inteira de uma Unica vez, gerando um mapa de caracteristicas compartilhado,
diferentemente de sua antecessora que processava cada regidao individualmente.

A evolugdo seguiu com o Faster R-CNN de Ren et al. [8], que introduziu a Region
Proposal Network (RPN), integrando a gerac@o de propostas a propria rede neural. Por
fim, apresenta-se o Mask R-CNN de He et al. [9], modelo central deste estudo, que
estende essa arquitetura ao adicionar um ramo paralelo para a segmentagao pixel a pixel
e aprimora a preservacao espacial através da camada Rol Align.

Na revisdo de trabalhos correlatos, destacam-se quatro pesquisas principais que
corroboram a abordagem deste estudo. Inicialmente, analisa-se o trabalho de Hou et al.
[10], que empregou a Faster R-CNN para a detec¢ao de danos sutis por impacto em magas.
O autor utilizou imagens hiperspectrais, evidenciando a complexidade da deteccdo desses
danos em imagens convencionais (RGB). Contudo, o estudo limitou-se a detec¢do via
bounding boxes, sem realizar a segmentagao pixel a pixel da area afetada.

Em contrapartida, o trabalho de El Akrouchi et al. [[11] enfatiza a robustez da Mask
R-CNN em cenérios complexos, aplicando o modelo para detectar, segmentar e contabi-
lizar paniculas de quinoa. Vale ressaltar que foram utilizadas fotografias comuns (RGB),
demonstrando a viabilidade dessa modalidade de imagem. O estudo comparou trés back-
bones distintos: ResNet-50, ResNet-101 e EfficientNet-B7, obtendo bons resultados com
a ResNet-101, arquitetura também adotada nesta pesquisa.

Na sequéncia, destaca-se o estudo de Osorio et al. [12], que também utiliza a
Mask R-CNN, mas com foco na técnica de Transfer Learning utilizando pesos do dataset
COCO [13]]. A pesquisa comprova a eficdcia do treinamento em datasets pequenos (sendo
o maior com 327 imagens) e estabelece trés conclusdes vitais: o uso de Transfer Learning
melhora os resultados finais; € possivel obter boa performance mesmo sem aumento de
dados (Data Augmentation); e a qualidade das anotacdes das mdscaras impacta mais o
desempenho do que a quantidade bruta de dados.

Por fim, examina-se o trabalho de Zhang et al. [14], que aplica a Mask R-CNN
para fenotipagem de alfaces. Diferentemente do anterior, este estudo destaca o uso in-
tensivo de Data Augmentation para contornar a escassez de dados, aplicando variadas
transformacoes nas imagens. Além disso, utilizou-se a validacdo cruzada K-fold Cross-
Validation (com k = 5), método que consiste em dividir o conjunto de dados em £ partes,
utilizando k— 1 partes para treino e 1 parte para teste em rodadas alternadas, maximizando
o uso dos dados e evitando vieses na avaliacao.

3. Método de Pesquisa

A metodologia de pesquisa fundamentou-se na aquisi¢do de imagens digitais por meio de
fotografia, compondo o acervo inicial do estudo. As imagens brutas foram submetidas a
uma etapa de pré-processamento, consistindo no redimensionamento das imagens.

O dataset original foi constituido por 300 imagens. O processo de anotagdo e
segmentacdo das regides de interesse (ground truth) foi realizado manualmente utilizando
uma ferramenta propria no formato VGG Image Annotator (VIA), definindo-se uma classe
Unica para a identificacdo dos danos fisicos.



Visando aumentar a capacidade de generalizacdo do modelo e mitigar o risco de
overfitting, aplicou-se a técnica de Data Augmentation de forma hibrida. O processo com-
binou variagdes manuais durante a captura fotografica e uma expansao artificial gerada via
algoritmo, que executou operagdes geométricas de rotacdo e inversao (espelhamento) nas
imagens. Esse procedimento resultou em uma expansao de 5x sobre o conjunto original,
totalizando um dataset final de 1800 imagens. Para a avaliacdo rigorosa do desempenho
do modelo, adotou-se o método de validagdo cruzada K-fold Cross-Validation, assegu-
rando que todos os dados fossem utilizados tanto para treino quanto para validacdo em
diferentes iteragdes.

Para a configuracdo do treinamento, adotou-se uma taxa de aprendizado (learning
rate) dinamica, estabelecida em 0.001 tanto para as etapas com congelamento de camadas
(freezing) quanto para o ajuste fino sem congelamento. A inicializa¢do dos modelos utili-
zou a técnica de Transfer Learning, carregando pesos pré-treinados no dataset COCO.

A funcdo de perda global (L) utilizada para monitorar o desempenho € multitarefa,
composta pela somatdria das perdas da Region Proposal Network (RPN) e das cabegas
da Mask R-CNN (classificacdo, regressdo da caixa delimitadora e mdscara), conforme
expresso na Equacao|[I}

L = Lrpn,,. + Lrpn,,, + LvronNN,,. + Lvrenn,,, + Lyvronn,,,., (1)

Aqui estd a redacgdo final para a se¢do de métricas, removendo as imagens € man-
tendo o rigor académico com as equagdes.

Na secdo de métricas de avalia¢do, definiram-se trés indicadores principais para
mensurar a eficicia do modelo. Primeiramente, utilizou-se a Average Precision (AP) para
analisar o desempenho global sobre a curva de Precisao x Revocagdo (Precision-Recall).
Essa métrica avalia a capacidade do modelo em realizar detec¢des corretas, minimizando
a ocorréncia de falsos positivos, a0 mesmo tempo em que maximiza a deteccao de todos
os danos presentes na imagem (alta revocacao).

Para quantificar a qualidade da segmentacdo espacial, adotou-se o Intersection
over Union (IoU). Esta métrica determina a porcentagem de sobreposicao correta entre a
madscara predita pelo modelo e a anotacao real (ground truth). O célculo é dado pela razao
entre a drea de intersecdo e a area de unido das duas regides, conforme a Equacao
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Por fim, aplicou-se o F1-Score, uma métrica que fornece a média harmonica entre
a Precis@o e a Revocacdo. O F1-Score € essencial para indicar o equilibrio do sistema,
penalizando modelos que possuem uma dessas métricas muito baixa em detrimento da
outra, conforme expresso na Equagio 3

Precisdo - Revocacao

F1=2 3)

Precisdo + Revocacgdo



4. Experimentos

Os experimentos foram estruturados em trés etapas distintas para avaliar diferentes es-
tratégias de treinamento. No primeiro experimento, aplicou-se a validagcao cruzada K-
fold Cross-Validation com k = 5, utilizando pesos pré-treinados no dataset COCO. Nesta
etapa, aplicou-se o congelamento (freezing) de todas as camadas de extragdo de carac-
teristicas da rede, mantendo apenas a ultima camada (cabeca de predicao) treindvel. O
objetivo foi verificar se o ajuste restrito exclusivamente a camada final seria suficiente
para que o modelo detectasse os danos fisicos com precisao.

O segundo experimento replicou a metodologia anterior, com a exce¢do de que o
treinamento foi realizado com o descongelamento total da rede (unfreezing). Essa etapa
visou validar se o retreinamento de todas as camadas apresentaria ganho ou degradacao
de desempenho em comparacdo a abordagem com freezing.

Por fim, o terceiro experimento foi conduzido de forma isolada utilizando o data-
set expandido (aumentado), com todas as camadas descongeladas (unfreezing). Manteve-
se a taxa de aprendizado (learning rate) em 0.001, considerando que as etapas por época
foram configuradas para percorrer a totalidade das imagens. Essa estratégia foi adotada
para adequar o tempo de convergéncia ao volume superior de dados. Ressalta-se que, di-
ferentemente dos experimentos anteriores, neste experimento ndo se aplicou a validacao
cruzada K-fold Cross-Validation, devido ao custo computacional invidvel para o escopo
desse trabalho.

5. Resultados

Os resultados experimentais demonstraram comportamentos distintos entre as estratégias
adotadas. No primeiro experimento (freezing), observou-se uma boa convergéncia durante
o treinamento, contudo, a etapa de validacdo apresentou valores de perda total relativa-
mente altos (1.5). Ao realizar a decomposi¢cdo da funcdo de perda, identificou-se que a
principal responsdvel por essa elevacao foi a perda da mascara (L;,,sx), que aumentou
gradativamente ao longo das épocas.

Em contrapartida, as demais perdas (classificacdo e bounding box) ndo convergi-
ram totalmente, mas estabilizaram-se. Isso indica que o modelo manteve a capacidade de
localizar a regido do dano corretamente, porém sua capacidade de segmentacao pixel a
pixel degradou-se conforme o avango do treinamento.

O segundo experimento (unfreezing) apresentou um comportamento de curva se-
melhante. Embora os valores absolutos de perda na validacao, tenham se mostrado ligei-
ramente inferiores ( 1.25) em comparac¢do ao primeiro cendrio, a tendéncia de degradagao
na segmentacao persistiu. Por fim, o terceiro experimento (com dataset aumentado) apre-
sentou resultados significativamente superiores. A convergéncia no treinamento ocor-
reu de forma gradual, similar as etapas anteriores, porém o destaque residiu na perda de
validacdo, que se manteve abaixo de 0.8. Comparativamente, isso representa uma me-
lhoria de aproximadamente 53,3% em relagdo ao experimento com freezing (1.5) e uma
reducdo consideravel frente ao experimento sem freezing (1.25). Além da reducdo glo-
bal, o comportamento dos componentes da perda alterou-se: pela primeira vez, a perda
da méscara (L,,4s;) convergiu gradualmente e permaneceu reduzida até as épocas finais,
evidenciando que o aumento de dados foi crucial para que o modelo generalizasse corre-
tamente a tarefa de segmentacao.



Corroborando a anélise do comportamento da fun¢do de perda, os resultados das
métricas de avaliacdo quantitativa evidenciam a evolucao da capacidade do modelo, con-
forme detalhado na Tabela[I] O experimento com Freezing estabeleceu a linha de base do
estudo. Ao aplicar o descongelamento total da rede (Unfreezing), observou-se um ganho
de desempenho geral nas métricas avaliadas em comparagdo a etapa inicial.

Contudo, foi o0 modelo treinado com o Dataset Expandido que apresentou os re-
sultados mais expressivos, confirmando a hipétese de que o aumento de dados € crucial
para a generalizacdo da rede. Diferentemente dos cendrios anteriores, nesta etapa todas
as métricas atingiram seus valores maximos. Destaca-se o salto significativo na Average
Precision (AP) e no F1-Score, indicando que a rede tornou-se muito mais robusta e equi-
librada na deteccdo dos danos. O mloU também apresentou uma evolugdo consistente em
relacdo aos modelos de freezing e unfreezing, validando que a segmentacdo da drea do
dano foi refinada concomitantemente a melhora na deteccao global.

Tabela 1. Comparativo dos resultados maximos obtidos nas métricas de
avaliacao (AP, F1 e mloU) para os trés cenarios experimentais.

Experimento AP@50 F1-Score@50 mloU

Freezing 0.6953 0.7227 0.6129

Unfreezing 0.7737 0.7899 0.6441

Expanded 0.8766 0.8767 0.7059

Nota: Os valores em negrito indicam o melhor desempenho em cada métrica.

6. Conclusao

Este estudo cumpriu o objetivo de avaliar o desempenho técnico e a utilidade pratica da
arquitetura Mask R-CNN na segmentagdo de instancias de danos fisicos. A investigacao
confirmou que o modelo é capaz ndo apenas de localizar, mas de delinear a area das
avarias, requisito essencial para a mensuracdo de drea exigida pelas normas regulatorias.

Os experimentos demonstraram que a aplicacdo exclusiva de Transfer Learning
em datasets reduzidos foi insuficiente para a precisdo da madscara, resultando em di-
vergéncia na fun¢do de perda de segmentagdo. A estabilizacdo do modelo ocorreu apenas
com a introducio do aumento de dados (Data Augmentation). Com a variabilidade espa-
cial ampliada, a rede aprendeu a definir as bordas dos defeitos com exatidao, alcangando
métricas superiores a 0.87 em precisdo (AP) e F1-Score.

Portanto, a combina¢do da arquitetura Mask R-CNN com a expansdo de dados
consolida-se como uma ferramenta eficaz para a segmentacao de danos em macas, ofere-
cendo uma alternativa robusta para auxiliar no controle de qualidade.
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