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1. INTRODUÇÃO
A estimação do tamanho de populações de difı́cil acesso, como grupos afetados por desas-
tres naturais, portadores de doenças estigmatizadas ou membros de redes clandestinas, re-
presenta um desafio fundamental para a epidemiologia, as ciências sociais e a formulação
de polı́ticas públicas [1]. Métodos de enumeração direta são frequentemente inviáveis
devido à natureza dispersa ou sigilosa desses grupos. Nesse contexto, a análise de redes
sociais emerge como uma abordagem poderosa, permitindo inferir caracterı́sticas de uma
população inteira a partir das conexões locais de um subconjunto de seus membros [2].
Uma das técnicas mais proeminentes para essa finalidade é o Método Network Scale-Up
(NSUM), uma abordagem de estimação indireta que utiliza Dados Relacionais Agregados
(ARD) [3]. O método baseia-se em inquirir uma amostra de indivı́duos sobre o tamanho
de suas redes pessoais e quantos membros da população-alvo eles conhecem. A partir
desses dados, dois estimadores são predominantemente utilizados para calcular a pre-
valência da população oculta: a Média das Razões (MoR), que pondera cada respondente
igualmente, e a Razão das Somas (RoS), que implicitamente dá mais peso aos indivı́duos
mais conectados [4].

A precisão do NSUM, contudo, não é absoluta e sua performance é intrinseca-
mente dependente da topologia subjacente da rede social [5]. A escolha entre os estima-
dores MoR e RoS não é trivial, e trabalhos teóricos sugerem que a presença de heteroge-
neidade na distribuição de conectividade, como a existência de hubs e vértices altamente
conectados, pode introduzir vieses e afetar a robustez de cada estimador de maneira dis-
tinta [6, 4]. Enquanto limitantes de erro analı́ticos fornecem uma base teórica, a validação
empı́rica de seu comportamento em diferentes estruturas de rede é crucial para compreen-
der sua aplicabilidade prática. O objetivo central deste trabalho é, portanto, conduzir um
estudo experimental e comparativo para avaliar a acurácia e a robustez dos estimadores
MoR e RoS sob diferentes topologias de grafos aleatórios. Por meio de simulação com-
putacional, o desempenho dos estimadores é sistematicamente medido em três modelos
de rede canônicos, cada um representando uma propriedade estrutural distinta: o modelo
de Erdős-Rényi, como linha de base de uma rede homogênea e aleatória; o modelo de Ba-
rabási-Albert, para investigar o impacto da heterogeneidade de grau em redes scale-free; e
o modelo de Watts-Strogatz, para analisar o efeito da alta clusterização local caracterı́stica
de redes de ”mundo pequeno”.

2. DESENVOLVIMENTO
As redes sociais podem ser modeladas formalmente como grafos [7, 8], onde os in-
divı́duos são representados por vértices e as relações entre eles por arestas. O Método



Network Scale-Up (NSUM) emerge como uma abordagem indireta para estimar o ta-
manho de populações de difı́cil acesso [1, 9] em cenários onde a enumeração direta é
inviável. O princı́pio fundamental reside na utilização de dados coletados por meio de per-
guntas diretas aos respondentes, assumindo que a rede pessoal de um respondente reflete
a composição da população geral. A formulação básica [10] requer o número de pessoas
conhecidas no grupo de interesse e o tamanho total da rede pessoal do respondente, ou
seu grau. O método então calcula [11] a proporção de membros do grupo na população
geral estimando essa proporção através da razão entre o número total de indivı́duos do
grupo conhecidos e o tamanho total das redes. Contudo, este estimador fundamenta-se
em pressupostos como a mistura aleatória na rede [5], ausência de erros de recordação e
acurácia na estimação do grau, sendo que desvios destes pressupostos podem introduzir
vieses consideráveis [12].

Neste trabalho, analisa-se profundamente duas abordagens para calcular a
proporção estimada da população oculta: o Mean of Ratios (MoR) e o Ratio of Sums
(RoS) [4]. O estimador MoR representa uma abordagem no nı́vel do indivı́duo, calcu-
lando a proporção da população oculta dentro da rede pessoal de cada respondente e, em
seguida, realizando a média aritmética simples dessas proporções sobre toda a amostra.
A intuição é que cada respondente fornece uma estimativa independente, mas o método
é sensı́vel a respondentes com grau muito baixo [6]. Em contrapartida, o estimador RoS
adota uma abordagem no nı́vel da amostra, somando o número de contatos na população
oculta reportado por todos os respondentes e dividindo pelo somatório dos graus. Isso
resulta em um peso maior para os hubs, pois seus contatos contribuem mais para os totais
[11], o que é vantajoso em redes heterogêneas.

Para avaliar a confiabilidade desses estimadores, utilizou-se a modelagem de gra-
fos aleatórios [13, 14]. O modelo de Erdős–Rényi [15, 16] foi empregado como base, onde
cada aresta é incluı́da com probabilidade independente, resultando em uma distribuição
de grau binomial e pouca variabilidade entre os vértices. Dada a limitação desse mo-
delo em representar redes reais heterogêneas [17], utilizou-se também o modelo de Ba-
rabási–Albert [18]. Este incorpora a ligação preferencial, onde novos vértices se conec-
tam aos existentes com probabilidade proporcional ao grau atual, gerando redes scale-free
com distribuição de lei de potência [19] e presença de vértices altamente conectados. Por
fim, o modelo de Watts–Strogatz [20] foi incluı́do para capturar o fenômeno de ”mundo
pequeno”, caracterizado por alto coeficiente de agrupamento e baixo comprimento médio
do caminho, desafiando o arcabouço teórico que assume mistura aleatória perfeita e per-
mitindo testar a robustez dos estimadores frente à alta coesão local [21].

A metodologia de pesquisa baseou-se em simulação computacional rigorosa. O
fluxo de trabalho consistiu na configuração da rede sintética, definição da população
oculta e sua prevalência real, amostragem de vértices simulando inquéritos, coleta de
dados relacionais e cálculo das estimativas MoR e RoS. O desempenho foi quantificado
por métricas como o erro relativo (normalizado para tratar super e subestimação sime-
tricamente), a probabilidade de erro elevado (risco de exceder um limiar de 5%), o viés
(tendência sistemática de erro) e a análise visual da distribuição via boxplots. Todos os
experimentos foram implementados em Python, utilizando bibliotecas como NetworkX
e NumPy, com sementes aleatórias fixas para reprodutibilidade e execução de 1.000
repetições por ponto de dados (50 grafos × 20 amostras).



Os resultados nas redes de Erdős-Rényi indicaram que, em uma topologia aleatória
e homogênea, os estimadores MoR e RoS apresentam desempenho virtualmente idêntico.
O erro médio decresceu consistentemente com o aumento da amostra para ambos, e
as distribuições de erro foram indistinguı́veis, com mediana próxima de 1.0 e redução
simétrica na dispersão. A análise de risco mostrou que a probabilidade de erro acima
de 5% é idêntica para os dois métodos, confirmando que em redes homogêneas não há
vantagem prática na escolha de um sobre o outro.

Já nas redes de Barabási-Albert, a heterogeneidade estrutural expôs diferenças de
desempenho. Contrariamente à expectativa teórica de um forte viés negativo para o MoR,
os resultados de viés foram baixos para ambos. No entanto, a análise de risco demonstrou
uma vantagem clara e consistente do estimador RoS. A probabilidade de o RoS produzir
um erro significativo foi sistematicamente menor do que a do MoR, especialmente para
amostras pequenas. Isso corrobora empiricamente os limitantes teóricos que sugerem que
o RoS, ao ponderar pelos graus, lida melhor com a presença de hubs, tornando-se uma
métrica mais confiável em redes scale-free [4].

Finalmente, nos experimentos com redes de Watts-Strogatz, buscou-se avaliar o
impacto da clusterização. Mesmo variando a probabilidade de religação para alternar en-
tre redes altamente ordenadas e mais aleatórias, ambos os estimadores se mostraram não
viesados e com desempenho idêntico. As curvas de erro e probabilidade foram indis-
tinguı́veis até a quarta casa decimal. Isso permitiu concluir que a propriedade de ”mundo
pequeno”e o alto agrupamento local não são os fatores que diferenciam a performance dos
estimadores, reforçando que a divergência observada no modelo Barabási-Albert deve-se
exclusivamente à heterogeneidade da distribuição de graus e não a correlações locais.

3. CONSIDERAÇÕES FINAIS

Este trabalho investigou a influência da topologia da rede no desempenho e na confi-
abilidade dos estimadores MoR e RoS do método NSUM. A análise empı́rica em três
modelos de rede distintos permitiu isolar variáveis estruturais crı́ticas. Os resultados ob-
tidos nos modelos de Erdős-Rényi e Watts-Strogatz estabeleceram que, em topologias
caracterizadas por uma distribuição de grau homogênea, o desempenho dos estimadores
é virtualmente idêntico em todas as métricas de avaliação: erro médio, viés e risco de
falha. Esta equivalência demonstrou que propriedades como a clusterização local não são
o fator determinante na diferenciação dos estimadores.

A divergência de desempenho emergiu claramente apenas na topologia de Ba-
rabási-Albert. A análise neste modelo scale-free revelou que, embora a diferença no erro
médio absoluto tenha sido modesta nos parâmetros testados, a análise de risco validou
a superioridade teórica do estimador RoS. Neste cenário, o RoS apresentou uma proba-
bilidade consistentemente menor de produzir estimativas com erro significativo, especi-
almente com amostras de menor tamanho. Conclui-se, portanto, que a superioridade de
um estimador sobre o outro é dependente da estrutura da rede, sendo a heterogeneidade
da distribuição de grau, especificamente a presença de hubs, o fator crucial que torna o
estimador RoS tecnicamente mais robusto e confiável. Futuras investigações poderiam
estender esta análise para modelos de blocos estocásticos e estratégias de amostragem
mais complexas.
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