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RESUMO

Este trabalho explora o uso de dados de ciência aberta para a classificação multimodal de aves no território
brasileiro, destacando disparidades na distribuição dos dados entre os estados. Essas diferenças provavelmente
estão relacionadas à ocorrência dos avistamentos reportados por cidadãos, indicando que, embora a ciência
cidadã aumente a disponibilidade de amostras, os experimentos ainda dependem da distribuição geográfica
dos colaboradores. A distribuição das espécies indica que a maior quantia de indivíduos está concentrada no
primeiro e último quartil, especialmente no último, indicando que poucas espécies dominam as ocorrências
enquanto muitas são incomuns, a delimitação de escopo é dependente do domínio do problema. Em relação
ao desempenho dos modelos, a quantidade de exemplos não mostrou uma ligação forte com a acurácia.
As mudanças na performance foram, em grande parte, por conta da arquitetura escolhida, principalmente
quando só imagens foram usadas. Nos casos em que só dados em forma de tabela foram usados ou quando as
duas modalidades foram combinadas, os resultados foram semelhantes, indicando que a escolha do modelo
tem um efeito pequeno sobre a métrica utilizada. Os classificadores alcançaram médias de acurácia de 0,8550
para dados tabulares, 0,3458 para imagens e 0,8606 para a combinação das modalidades. A concatenação
dos embeddings das duas modalidades demonstrou ganho de acurácia em alguns cenários, criando um espaço
híbrido de características que combina a estabilidade dos dados tabulares com a expressividade das imagens.
Essa abordagem reduz a sensibilidade à escolha do algoritmo e oferece boa capacidade de representação. De
modo geral, este estudo estabelece uma baseline para a classificação multimodal de aves no Brasil e fornece
subsídios para a aplicação de diferentes arquiteturas em problemas de Classificação Visual Fina.

Palavras-chave: Classificação Multimodal. Classificação Visual Fina. Arquiteturas Transformer. Classifica-
ção Downstream. Ciência Cidadã.
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ABSTRACT

This work explores the use of open science data for multimodal bird classification in Brazil, highlighting dis-
parities in data distribution across states. These differences are likely related to the occurrence of sightings
reported by citizen scientists, indicating that, although citizen science increases sample availability, exper-
iments still depend on the geographic distribution of contributors. Species distribution indicates that the
highest number of individuals is concentrated in the first and last quartiles, especially in the last one, sug-
gesting that few species dominate occurrences while many are rare, and that the scope delimitation depends
on the problem domain. Regarding model performance, the number of samples did not show a strong correla-
tion with accuracy. Performance variations were largely due to the chosen architecture, especially when only
images were used. In scenarios where only tabular data was used or when both modalities were combined,
results were similar, indicating that model choice has limited effect on the selected metric. The classifiers
achieved average accuracies of 0.8550 for tabular data, 0.3458 for images, and 0.8606 for the combination of
modalities. The concatenation of embeddings from both modalities showed accuracy gains in some scenarios,
creating a hybrid feature space that combines the stability of tabular data with the expressiveness of images.
This method makes it less affected by the choice of algorithm while still offering powerful representation
abilities. In conclusion, this research sets a standard for bird classification in Brazil using multiple data types
and offers ideas for using various designs in detailed visual classification challenges.

Keywords: Multimodal Classification. Fine-Grained Visual Classification. Transformer Architectures. Downs-
tream Classification. Citizen Science.
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1 INTRODUÇÃO

Estudos recentes demonstram que a conversão de habitats naturais em mosaicos de uso antrópico
(e.g., agricultura, pastagens) reduz a riqueza de espécies, afetando principalmente as sensíveis às bordas e
dependentes de fragmentos florestais extensos [1].

O aumento das atividades relacionadas à agricultura industrial vem impactando o habitat das espé-
cies em solo brasileiro. Um exemplo é a Amazônia, onde espécies comuns demonstram contribuições únicas
para o ecossistema [2].

A presença humana decorrente da atividade econômica pode ser observada tanto no surgimento de
novos moradores em áreas de mata, semelhante ao ocorrido entre 1960 e 1980, quando a população de Manaus
triplicou com a criação do Distrito Industrial [3], quanto nas rodovias que interligam a região ao resto da
Amazônia. Estas servem para transportar produtos retirados das áreas exploradas, atuando como vetores
ativos que impulsionam a interiorização da destruição florestal [4].

Esse avanço humano sobre as áreas naturais não afeta apenas a vegetação, mas também a fauna local,
segundo o Comitê Brasileiro de Registros Ornitológicos1(CBRO), o conhecimento ornitológico no Brasil vem
crescendo graças a contribuições, especialmente por fotografias. Seu conteúdo serve como base taxonômica
aviária para o maior portal de ciência cidadã sobre aves brasileiras na internet, o Wiki Aves2 [5]. A invasão
humana no habitat desses animais ao longo do tempo e o próprio avanço da tecnologia facilitam a coleta de
dados por entusiastas e cientistas.

A identificação automatizada de espécies por meio do monitoramento é fundamental para a conser-
vação ecológica, especialmente em cenários de perda de biodiversidade [6].

No entanto, embora a urbanização e a industrialização representem desafios para a preservação dessas
espécies em seu habitat natural, a classificação das que apresentam maior incidência ao longo dos anos obtém
viabilidade por meio do treinamento de modelos. Estas estão presentes na Lista de Aves do Brasil3 e também
no Wiki Aves, onde é disponibilizado um acervo de fotografias juntamente com metadados associados.

Tais informações, colhidas ao longo do tempo, podem ajudar a distinguir, catalogar e registrar a
incidência das espécies tanto em localidades já conhecidas quanto em novas, podendo ainda revelar possíveis
padrões de migração desses animais. Esse processo é essencial para compreender os efeitos do avanço da
presença humana e das mudanças decorrentes sobre a fauna, permitindo identificar como ocorre a adaptação
das espécies em ambientes antrópicos. Desse modo, a classificação automatizada contribui para mitigar a
perda de biodiversidade e a fragmentação dos habitats naturais.

Este trabalho propõe a classificação multimodal de pássaros em território nacional utilizando suas
imagens e seus respectivos metadados geo-temporais, escolha fundamentada na natureza do conjunto de dados
disponível, oriundo de iniciativas de ciência cidadã. A fusão multimodal permite que informações contextuais,
como localização, atributos taxonômicos e temporais façam parte da classificação juntamente com as imagens.

O Capítulo 2 apresenta a fundamentação teórico-metodológica e os trabalhos correlatos; O Capítulo 3

1 https://www.cbro.org.br/
2 https://www.wikiaves.com.br/
3 https://www.cbro.org.br/listas/
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contém o método de pesquisa do trabalho; O Capítulo 4 descreve os experimentos, e os resultados estão
presentes no Capítulo 5; E por fim, a conclusão é descrita no Capítulo 6.
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2 FUNDAMENTAÇÃO TEÓRICA

A arquitetura Transformer [7] foi criada para resolver os problemas de paralelização que existiam
nas Redes Neurais Recorrentes [8] (RNNs) e nas convoluções usadas em tarefas de transdução de sequên-
cias. Arquiteturas como a Long Short-Term Memory [9] (LSTM) e General Regression Neural Network [10]
(GRNNs) tinham limitações intrínsecas com relação a paralelização dentro dos exemplos de treinamento, um
problema para sequências de maior comprimento.

A ideia por trás do Transformer é que, ao contrário das outras estruturas, ele não precisa usar
recorrências ou convoluções, utilizando mecanismos de Atenção em seu lugar [7]. O mecanismo de Atenção
funciona associando três vetores: queries, keys e values, cada posição da entrada produz estes vetores, a partir
disso a Atenção calcula a compatibilidade entre cada query e todas as keys, gerando pesos que determinam
quanto cada value contribui para a saída.

A Atenção consiste em atribuir pesos diferentes às partes da entrada, de maneira que o modelo seja
mais seletivo em elementos mais relevantes, o mecanismo mede a relação entre cada elemento da sequência
com os demais, gerando uma combinação ponderada.

Através da Autoatenção o Transformer avalia a importância relativa de cada entrada em relação aos
outros elementos da sequência, diferentemente de arquiteturas que utilizam a recorrência para processar os
dados de forma sequencial e dependem de estados internos, a Atenção considera toda a sequência ao atribuir
pesos para a informação de cada token com relação a sua representação final. Em arquiteturas baseadas em
convolução as características locais são extraídas através de filtros deslizantes sobre a vizinhança espacial,
diferente do Transformer que não assume relações locais.

O mecanismo de Autoatenção o Transformer reduz o número mínimo de operações sequenciais ne-
cessárias, tornando mais fácil a modelagem de dependências de longo alcance e facilitando a paralelização.
O mecanismo de Atenção, mecanismo central dos Transformers funciona associando uma query (𝑄) e um
conjunto de pares chave-valor (𝐾,𝑉 ) a uma saída.

A saída é calculada como uma soma ponderada dos valores (𝑉 ), onde o peso atribuído a cada valor é
determinado por uma função de compatibilidade entre a query e sua respectiva key (𝐾). A implementação do
Produto Escalar Escalonado no Mecanismo de Atenção aditiva otimiza a multiplicação de matrizes, o cálculo
matricial para Atenção é expresso como:

Attention(𝑄,𝐾, 𝑉 ) = softmax
(︂
𝑄𝐾𝑇

√
𝑑𝑘

)︂
𝑉 (2.1)

𝑄, 𝐾 e 𝑉 são matrizes onde cada linha representa um vetor da respectiva sequência, a partir disso a softmax
transforma o vetor resultante do produto escalar em uma distribuição de probabilidades, onde cada elemento
recebe um valor entre 0 e 1 de modo que a soma seja igual a 1, 𝐾𝑇 representa a transposta de 𝐾 que calcula
a compatibilidade entre 𝑄 e 𝐾. Essa normalização enfatiza os elementos mais relevantes e atenua os menos
importantes.

O termo 1/
√
𝑑𝑘 é um fator de escalonamento, onde 𝑑𝑘 representa o tamanho dos vetores de key.

Esse ajuste é muito importante, porque quando 𝑑𝑘 é alto, os produtos escalares tendem a aumentar muito,
fazendo com que a função softmax vá para áreas com gradientes muito baixos, dificultando o aprendizado.
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Com essa abordagem, a estrutura consegue conectar diferentes posições, tornando mais fácil entender as
relações globais.

A Atenção Multi-Cabeças é uma extensão do mecanismo de Atenção e permite que o modelo foque em
diferentes relações da sequência de forma simultânea, cada cabeça aplica uma projeção linear independente aos
vetores 𝑄,𝐾𝑒𝑉 e realiza a atenção separadamente, esta extensão permite que o modelo capture padrões em
diferentes subespaços. Isso permite que o modelo capte informações de diferentes partes de forma simultânea,
melhorando ainda mais a habilidade de representar informações de forma global.

2.1 Classificações de imagem

A utilização de Convolutional Neural Networks [11] (CNNs) foi até a proposta dos Vision Trans-
formers [12] (ViTs) o estado da arte relacionado a classificação de imagens [13]. Por mais que a arquitetura
obtivesse resultados satisfatórios continuava sendo dependente de suas convoluções para capturar padrões
nas imagens. Apesar dos avanços a sua limitação de captura a padrões locais, dependendo de configurações
de filtros e camadas impulsionou o desenvolvimento dos Vision Transformers [14].

Entretanto ainda existem cenários onde as CNNs podem performar melhor que os ViTs como, por
exemplo, quando há restrição de dados, hardware ou foco em padrões locais. Por sua aplicação ter menos
limitações vemos que mesmo com alguns contrapontos ela continua sendo empregada em diversos cenários [15;
16].

2.1.1 Classificação com Vision Transformer

O Vision Transformer adapta a arquitetura Transformer, originalmente desenvolvida para processa-
mento de linguagem natural, para tarefas de visão computacional, os ViTs utilizam o mecanismo de Atenção
para modelar relações globais entre diferentes regiões da imagem [12; 14].

Inicialmente, uma imagem de dimensão 𝐻 ×𝑊 ×𝐶 é dividida em 𝑁 blocos quadrados de tamanho
𝑃 ×𝑃 , de modo que 𝑁 = 𝐻𝑊

𝑃 2 . Cada bloco 𝑥𝑖 ∈ R𝑃×𝑃×𝐶 é linearmente projetado em um vetor de dimensão
fixa 𝑑 por meio de uma camada de embedding:

𝑧𝑖 = 𝐸(𝑥𝑖) ∈ R𝑑, (2.2)

onde 𝐸(·) representa a projeção linear aprendida. Para incorporar informações espaciais, cada bloco
embedding recebe um vetor de posição 𝑝𝑖, gerando o embedding final do bloco:

𝑧𝑖 = 𝑧𝑖 + 𝑝𝑖. (2.3)

A sequência de embeddings {𝑧1, 𝑧2, . . . , 𝑧𝑁} é então processada por um Transformer Encoder, com-
posto por camadas de Atenção Multi-Cabeças, normalização e redes feed-forward, cada camada feed-forward
consiste em uma rede neural totalmente conectada aplicada a cada bloco de forma individual, refinando suas
representações e extraindo características não-lineares. O mecanismo de Atenção permite que cada bloco
interaja com todos os outros blocos da imagem, capturando dependências de longo alcance e relações globais:

Attention(𝑄,𝐾, 𝑉 ) = softmax
(︂
𝑄𝐾⊤
√
𝑑𝑘

)︂
𝑉, (2.4)
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onde 𝑄, 𝐾 e 𝑉 são as matrizes de consulta, chave e valor derivadas dos embeddings dos blocos, e 𝑑𝑘
é a dimensão das chaves.

A matriz de consulta 𝑄 contém representações que perguntam por informação relevante em outros
blocos, na matriz chave 𝐾 temos as representações que são comparadas com as consultas onde a matriz de
valor 𝑉 armazena as informações que serão combinadas de acordo com os pesos calculados.

Para realizar a classificação, a sequência de blocos recebe um token especial [CLS], cuja saída após o
encoder representa um resumo da imagem inteira. Este vetor é passado por uma camada totalmente conectada
para gerar as probabilidades das classes:

𝑦 = softmax(𝑊cls 𝑧cls + 𝑏cls), (2.5)

onde 𝑧cls é o embedding do token [CLS] após o encoder e 𝑊cls, 𝑏cls são os parâmetros da camada de
classificação.

Essa abordagem permite que os ViTs capturem relações globais de forma eficiente, superando limi-
tações das CNNs em datasets grandes, ao modelar padrões complexos de maneira mais flexível.

2.1.2 Swin Transformer for Fine-Grained Recognition

A Figura 1 [17] ilustra a arquitetura SwinFG, na qual se efetua a integração de Mapas de Atenção
locais dentro de uma estrutura global pensando em resolver problemas de Classificação Visual Fina de Espécies
(FGVC) ou problemas similares, isto é, tarefas de distinção entre categorias próximas ou parecidas.

Figura 1 – Esquema da arquitetura do SwinFG.

Com fundamentação nos Mapas de Atenção gerados em distintas janelas do Swin Transformer,
o modelo executa uma fusão iterativa, preservando a rastreabilidade da evolução dos pesos ao longo das
camadas.
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A metodologia é construída unindo Mapas de Atenção locais em uma matriz de afinidade global. Essa
tabela é criada usando transformações repetitivas que aplicam multiplicação de matrizes de forma contínua,
um aspecto importante que garante o valor de cada parte da imagem. Isso aumenta a diferença entre as áreas
relevantes e o fundo, evitando que dados desnecessários possam prejudicar a acurácia do modelo.

O mecanismo de janelas deslocadas do Swin Transformer, também representado na Figura 1, res-
tringe a operação de Autoatenção a regiões menores sem perder a capacidade de capturar relações de longo
alcance, este mecanismo organiza a entrada em janelas de blocos, estas janelas são deslocadas entre camadas
permitindo que as informações da imagem se misturem gradualmente.

2.2 Classificações tabulares

A aplicação de tarefas de classificação em dados tabulares é documentada em diversos contextos, um
dos primeiros modelos que foi empregado nesse tipo de tarefa foi a Multi-Layer Perceptron (MLP), treinadas
com retropropagação [8; 18]. Essas redes conseguem entender padrões complexos a partir de grupos de dados.
A aplicação tem maior aplicabilidade quando existem relações entre diferentes variáveis que não seguem uma
linha reta, permitindo aproximar funções complexas.

Por sua fácil interpretabilidade e adaptação uma alternativa às redes neurais são algoritmos com
base nas árvores de decisão. O ID3 por exemplo, cria árvores de decisão utilizando medidas de entropia para
escolher os atributos mais importantes de cada nó [19]. Com base nessa ideia, apareceram os métodos, como
o Random Forest que junta várias árvores de decisão que funcionam sozinhas para diminuir a variância e
melhorar a precisão do modelo [20].

Outro progresso significativo na classificação de dados tabulares é o boosting, que cria modelos
ligeiramente melhores, denominados modelos fracos um após o outro, como árvores simples, para melhorar os
erros dos modelos que vieram antes. Isso leva a um modelo mais forte e confiável [21]. Métodos de boosting,
como o Gradient Boosting Machine, se tornaram muito populares porque conseguem trabalhar bem com
dados de tabelas que são variados e complicados, muitas vezes se saindo melhor do que redes neurais e
árvores isoladas em termos de robustez e acurácia.

Assim, a literatura [22; 23] mostra que, mesmo com o progresso das redes neurais, técnicas tradi-
cionais que usam árvores e conjuntos ainda são consideradas importantes para classificar dados em tabelas,
principalmente quando se precisa de interpretação, solidez e bom desempenho em conjuntos de dados variados.

2.2.1 TabTransformer

A modelagem de dados tabulares representa a forma de dados mais comum em aplicações reais [23],
historicamente o estado da arte para dados tabulares tem sido dominado por métodos de conjunto baseados
em árvores, como as Árvores de Decisão com Boosting de Gradiente (GBDT, do inglês Gradient Boosting
Decision Trees - GBDT). Em contraste, modelos baseados em Aprendizado Profundo dominam as áreas de
imagem e texto.

Modelos clássicos de Aprendizado Profundo, como o Multi-Layer Perceptron, utilizam embeddings
paramétricos para representação de características categóricas aprendidas durante o treinamento, mas sofrem
de limitações significativas, incluindo a falta de interpretabilidade e baixa robustez contra dados sem com-
pletude ou ruidosos. Mais importante, os MLPs geralmente não conseguem igualar a precisão de previsão dos
modelos baseados em árvores, como o GBDT, na maioria dos conjuntos de dados.
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A proposta da arquitetura do TabTransformer [24] é abordar as limitações do MLP e fechar a
lacuna de desempenho em relação ao GBDT através da Autoatenção que antes era aplicada ao domínio
de Processamento de Linguagem Natural. Camadas Transformer baseadas em Autoatenção transformam
os embeddings paramétricos de características categóricas em embeddings contextuais, sendo composto por
três componentes principais: i) Uma camada de Embedding de Coluna; ii) Uma pilha de 𝑁 camadas de
Transformer; iii) Uma MLP posicionada no topo da arquitetura, responsável pela etapa final de predição.

Embedding de Coluna e Identificador Único

Cada característica categórica 𝑥𝑖 é embutida em um embedding paramétrico de dimensão 𝑑, denotado
por 𝑒𝜙𝑖

(𝑥𝑖) ∈ R𝑑. Para dados tabulares, o método de embedding de coluna é único e inclui um identificador
único (𝑐𝜙𝑖

) para distinguir as classes em uma coluna daquelas em outras colunas. O embedding para um valor
𝑥𝑖 = 𝑗 é definido pela concatenação:

𝑒𝜙𝑖
(𝑗) = [𝑐𝜙𝑖

, 𝑤𝜙𝑖𝑗
] (2.6)

onde 𝑐𝜙𝑖
∈ R𝑙 é o identificador único da coluna, e 𝑤𝜙𝑖𝑗

∈ R𝑑−𝑙 é o embedding específico do valor da caracte-
rística. Diferentemente do Transformer original, o TabTransformer não utiliza codificações posicionais, pois
os dados tabulares não possuem ordenação intrínseca das características.

Camadas de Transformer e Contextualização

Os embeddings paramétricos 𝐸𝜙(𝑥𝑐𝑎𝑡) = {𝑒𝜙1(𝑥1), . . . , 𝑒𝜙𝑚
(𝑥𝑚)} são alimentadas nas camadas de

Transformer, representadas por uma função 𝑓𝜃. Através da agregação sucessiva de contexto de outros embed-
dings, cada embedding paramétrico é transformado em um embedding contextual ℎ𝑖, de modo que:

{ℎ1, . . . , ℎ𝑚} = 𝑓𝜃({𝑒𝜙1(𝑥1), . . . , 𝑒𝜙𝑚
(𝑥𝑚)}) (2.7)

Uma camada de Transformer consiste em uma camada de Atenção Multi-Cabeças seguida por uma
camada position-wise feed-forward, com adição por elemento e normalização de camada após cada subcamada.

O mecanismo de Autoatenção calcula o quanto cada embedding de entrada atende aos outros em-
beddings, transformando-o em uma representação contextual. A Atenção é calculada pela matriz 𝐴 ∈ R𝑚×𝑚,
definida como:

Attention(𝐾,𝑄, 𝑉 ) = 𝐴 · 𝑉, onde 𝐴 = softmax
(︂
𝑄𝐾𝑇

√
𝑘

)︂
(2.8)

Onde 𝑚 é o número de embeddings de entrada (características categóricas) e 𝑘 é a dimensão dos vetores chave
e consulta.

Os embeddings contextuais {ℎ1, . . . , ℎ𝑚} são concatenados com as características contínuas 𝑥𝑐𝑜𝑛𝑡
para formar um vetor de dimensão (𝑑×𝑚+ 𝑐), que é então introduzido em um MLP superior 𝑔𝜓 para prever
o alvo 𝑦.

O treinamento do TabTransformer é realizado de forma end-to-end, minimizando a função de perda
𝐿(𝑥, 𝑦) aprendendo simultaneamente os parâmetros 𝜙 (para embedding de coluna), 𝜃 (para camadas Trans-
former) e 𝜓 (para o MLP superior):

𝐿(𝑥, 𝑦) ≡ 𝐻(𝑔𝜓(𝑓𝜃(𝐸𝜙(𝑥𝑐𝑎𝑡)), 𝑥𝑐𝑜𝑛𝑡), 𝑦) (2.9)
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Os embeddings contextuais aprendidos pelo TabTransformer são altamente robustos contra dados
ruidosos e ausentes, superando o MLP basal nesses cenários. Essa robustez é atribuída à propriedade contex-
tual dos embeddings, onde uma característica ruidosa pode extrair informações das características contextuais
corretas, permitindo um grau de correção.

O TabTransformer demonstrou superar significativamente o estado da arte em Aprendizado Supervi-
sionado, método que aprende a partir de dados já rotulados corretamente, além disso, se destaca especialmente
quando a quantidade de dados não rotulados é grande, igualando seu desempenho com modelos GBDT [24].

2.3 Classificações multimodais

A informação no mundo real é inerentemente multimodal, provindo de múltiplos canais de entrada,
como imagens associadas a legendas, ou sinais visuais e auditivos em vídeos. A integração de múltiplas mídias,
suas características ou decisões intermediárias para a realização de uma tarefa de análise é referida como fusão
multimodal.

A fusão de múltiplas modalidades pode fornecer informações complementares e aumentar a precisão
do processo de tomada de decisão geral. Contudo, as diferentes modalidades possuem características distintas,
incluindo formatos e taxas de captura variadas, o que impõe desafios à sincronização e à modelagem das
correlações [25].

Níveis e Estratégias de Fusão Clássicas

As estratégias de fusão são tradicionalmente classificadas em dois níveis: fusão em nível de caracte-
rística, ou fusão precoce e fusão em nível de decisão, ou fusão tardia [26].

Na fusão em nível de característica, as características extraídas das modalidades de entrada são
combinadas em uma única representação antes de serem enviadas a uma única unidade de análise, ou seja
é single-branch. Este método produz uma verdadeira representação multimídia, pois as características são
integradas desde o início, e exige apenas uma fase de aprendizado. A dificuldade está em combinar caracte-
rísticas em uma representação comum pois a sincronização temporal entre as características multimodais é
complexa de representar.

A fusão em nível de decisão junta escolhas locais feitas com base em características específicas. Essas
escolhas, por estarem em um nível de significado, normalmente têm a mesma forma, o que torna a fusão mais
fácil e permite a combinação mais flexível de múltiplas decisões. Além disso, a fusão tardia dá a liberdade de
utilizar métodos mais apropriados para analisar cada modalidade de forma separada, aplicação multi-branch.
O principal desafio é que isso exige um esforço maior de aprendizado, já que cada modalidade precisa de uma
fase de Aprendizado Supervisionado diferente, além de uma etapa final para combinar tudo.

A fusão tardia tende a fornecer um desempenho ligeiramente melhor para a maioria dos concei-
tos analisados, quando a fusão precoce é mais eficaz, as melhorias de desempenho são notavelmente mais
significativas [26].

Aprendizado Multimodal com Modelos Generativos Profundos

Apesar da utilidade das estratégias de fusão nos níveis de característica e decisão, a modelagem
de dados multimodais, onde as modalidades possuem propriedades estatísticas muito distintas, apresenta
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desafios significativos para modelos rasos.

Modelos convencionais discriminativos não conseguem lidar muito bem com a falta de certos tipos de
entrada ou usar enormes quantidades de dados não rotulados. Uma boa representação que envolve múltiplas
modalidades deve servir tanto para tarefas que diferenciam quanto para aquelas que buscam informação, mas
também precisa ser simples de conseguir mesmo quando alguns tipos estão faltando, permitindo que dados
que estão ausentes sejam preenchidos.

A Máquina de Boltzmann Profunda (DBM do termo em inglês para Deep Boltzmann Machine) [27]
é um modelo gráfico não direcionado que aprende uma densidade de probabilidade conjunta sobre o espaço de
entradas multimodais. A DBM alcança a fusão aprendendo uma representação unificada a partir dos estados
de variáveis latentes.

O modelo é formado juntando DBMs que são feitas para diferentes tipos, colocando uma camada
oculta binária extra em cima para unir essas modalidades. Os trajetos de cada tipo podem ser treinados
antes, sem supervisão, aproveitando muitos dados que não têm rótulos.

A representação que combina diferentes entradas é obtida a partir da camada oculta central da rede.
Essa combinação é considerada a mais útil, pois elimina as dependências específicas de cada tipo de dado
quando avança na rede [27].

Uma característica importante do DBM Multimodal é que ele consegue gerar novos dados. Isso
significa que ele pode criar informações para modalidades que estão faltando, como produzir texto a partir
de uma imagem ou encontrar imagens usando uma descrição em palavras.

2.3.1 Classificação com Transformer Multimodal

O esquema de pré-treinamento e ajuste fino (pre-train-and-fine-tune) foi expandido para o domínio
conjunto de visão e linguagem, dando origem à categoria de modelos Vision-and-Language Pre-training
(VLP). Esses modelos são pré-treinados em pares de imagem e texto alinhados, utilizando objetivos como
casamento de imagem e texto (image text matching) e modelagem de linguagem mascarada (masked language
modeling), e são subsequentemente ajustados para tarefas multimodais downstream.

Historicamente, as abordagens VLP dependiam fortemente de processos de extração de caracte-
rísticas visuais, que geralmente envolviam a supervisão de região e arquiteturas convolucionais profundas.
Tais métodos criavam gargalos de eficiência, pois a extração de características visuais exigia muito mais
computação do que as etapas subsequentes de interação multimodal.

A nova geração de arquiteturas multimodais baseadas em Transformer busca superar essas limitações,
introduzindo caminhos de processamento visual mais leves e unificados, para as quais se identificam técnicas
single-branch e dual-branch aplicadas a diferentes domínios.

Vision-and-Language Transformer

O Vision-and-Language Transformer [28] (ViLT) é uma arquitetura VLP mínima e monolítica, ao
implementar um esquema simples de visual embedding, utilizando projeção linear em blocos de imagem,
método introduzido pelo Vision Transformer, simplifica as entradas tratando-as de maneira unificada e sem
convolução, em vez de extrair características visuais por meio de convoluções como em modelos VLP baseados
em regiões, o ViLT transforma diretamente blocos da imagem em embeddings através de uma projeção linear.
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Essa abordagem faz com que esta arquitetura seja mais rápida que VLPs baseados em características de região.

Sendo uma arquitetura de fluxo único onde a maior parte da computação é concentrada na mode-
lagem das interações modais e embora tenha sido originalmente projetado e pré-treinado para tarefas como
Visual Question Answering e recuperação, sua arquitetura permite a adaptação direta para classificação su-
pervisionada de pares imagem-texto. O modelo utiliza a representação agrupada, da sequência multimodal
final para alimentar uma cabeça downstream para predição de classes.

Contrastive Language-Image Pre-training

O Contrastive Language-Image Pre-training [29] (CLIP) representa uma abordagem distinta, focada
no aprendizado de representações visuais transferíveis a partir da supervisão em linguagem natural. Ele foi
pré-treinado em um vasto conjunto de 400 milhões de pares de imagem e texto com um objetivo contrastivo
simples de prever qual legenda corresponde a qual imagem.

O modelo consiste em dois codificadores separados e igualmente dispendiosos que mapeiam as entra-
das para um espaço de embedding multimodal, onde a similaridade de cosseno entre pares correspondentes
é maximizada. Diferentemente do ViLT, a interação entre as modalidades no CLIP é rasa, limitada a um
produto escalar entre os vetores de embedding extraídos.

Esta característica é crucial para a classificação supervisionada, o CLIP não foi treinado para clas-
sificação direta. No entanto, seus embeddings podem ser aproveitados em modelos downstream para tarefas
supervisionadas. A principal aplicação para classificação é a transferência zero-shot, o codificador de texto
é reutilizado para sintetizar um classificador linear (zero-shot classifier) ao codificar os nomes ou descrições
das classes, e a predição é feita pelo cálculo da similaridade de cosseno entre o embedding da imagem e os
embeddings das classes textuais.

Perceiver

O Perceiver [30] é um framework de representation learning projetado para a percepção geral, capaz
de processar simultaneamente entradas de alta dimensão de múltiplas modalidades sem depender de pressu-
postos arquitetônicos específicos de domínio, ou seja, não depende de convoluções, recorrências ou estruturas
específicas de dados, ao utilizar atenção e projeções lineares ele processa qualquer tipo de entrada.

Para enfrentar a grande quantidade de informações de entrada, o Perceiver usa um sistema de Atenção
assimétrica que ajuda a transformar essas informações em um espaço menor e fixo. Essa transformação é feita
por meio de um módulo de Atenção cruzada que converte o conjunto de dados de entrada em um conjunto
menor.

A arquitetura então processa o latent array através de uma pilha profunda de blocos Transformer
Autoatenção. Essa estrutura permite a fusão de informação em todos os níveis, já que o modelo pode itera-
tivamente extrair informações relevantes da entrada através de múltiplos módulos de Atenção cruzada.

Embora o Perceiver tenha sido desenvolvido como um framework genérico, e não seja intrinsecamente
um classificador direto, ele pode ser aplicado a tarefas downstream de classificação supervisionada. A saída
do Perceiver é tipicamente obtida pela média do módulo final de Autoatenção latente sobre a dimensão de
índice, produzindo um vetor de resumo global que é então projetado para o número de classes alvo por uma
camada linear.
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2.4 Cabeças de classificação

Cabeças de classificação são camadas finais de um modelo pré-treinado que são adicionadas para
tarefas específicas conhecidas como downstream tasks. O modelo base aprende as representações a partir do
pré-treinamento e a Cabeça de classificação converte as representações em previsões ou categorias específicas,
as Cabeças permitem que o mesmo backbone seja reutilizado em múltiplos cenários.

2.4.1 𝑘-Nearest Neighbors

O classificador 𝑘-Nearest Neighbors [31] (𝑘-NN) é reconhecido como um procedimento de decisão não
paramétrico, o que significa que ele opera independentemente de quaisquer pressupostos sobre as estatísticas
subjacentes da distribuição conjunta. Este método atribui a um ponto de amostra que se deseja classifi-
car, denominado 𝑥, a mesma classificação do ponto mais próximo encontrado em um conjunto de amostras
previamente classificadas.

Para que o procedimento seja executado, é fornecido um conjunto de 𝑛 pares corretamente classifi-
cados: (x1, 𝜃1), (x2, 𝜃2), . . . , (x𝑛, 𝜃𝑛). As observações x𝑖 representam as medições de um indivíduo e tomam
valores em um espaço métrico 𝑋, no qual está definida uma métrica 𝑑. As variáveis 𝜃𝑖 representam a categoria
à qual o 𝑖-ésimo indivíduo pertence, tomando valores no conjunto {1, 2, . . . ,𝑀}.

O objetivo é estimar a categoria 𝜃 de uma nova observação x utilizando a informação contida no
conjunto de pontos classificados. O núcleo do algoritmo reside na identificação do vizinho mais próximo, x*

𝑖 ,
em relação a x, o vizinho mais próximo é definido como o ponto x*

𝑖 que minimiza a distância 𝑑(x𝑖,x) para
todos os 𝑖 no conjunto de 𝑛 amostras.

Uma vez identificado o vizinho mais próximo x*
𝑖 , a regra do Vizinho Mais Próximo toma a decisão de

classificar x na categoria 𝜃*
𝑖 correspondente a esse vizinho. Este é o procedimento de decisão não paramétrico

mais simples desta forma, pois a classificação de x depende exclusivamente da classificação de seu vizinho
mais próximo, ignorando as classificações dos 𝑛− 1 pontos restantes.

A abordagem simples reside na suposição heurística de que observações que estão próximas terão
a mesma classificação, ou pelo menos terão distribuições de probabilidade posteriores quase idênticas em
relação às suas respectivas classificações.

A eficácia desta regra é notável, pois, mesmo na análise de grandes amostras, a probabilidade de erro
𝑅 da regra NN é limitada superiormente por duas vezes a probabilidade de erro de Bayes 𝑅*. A probabilidade
de erro de Bayes (𝑅*) é o mínimo possível sobre todas as regras de decisão, servindo como uma referência
para a excelência que não pode ser superada. No sentido de que 𝑅 é no máximo o dobro de 𝑅*, metade da
informação de classificação em um conjunto infinito de amostras está contida no vizinho mais próximo.

Uma extensão deste conceito é a regra do 𝑘-Vizinho Mais Próximo (𝑘-NN), que atribui ao ponto
não classificado a classe mais representada entre seus 𝑘 vizinhos mais próximos. No entanto, o procedimento
de Vizinho Mais Próximo Único (1-NN) foi mostrado ser admissível entre a classe das regras 𝑘-NN para o
problema de 𝑛 amostras, sugerindo que, em certas distribuições, ele é estritamente melhor, pois possui uma
probabilidade de erro mais baixa.

No exemplo ilustrado na Figura 2 [32], o 𝑘-NN classifica um novo ponto, representado pelo quadrado
preto, com base nas classes predominantes entre seus 𝑘 vizinhos mais próximos.
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Figura 2 – Demonstração da classificação de um novo ponto com diferentes valores de 𝐾.

2.4.2 Random Forest

O Random Forest [20] é um classificador que consiste numa coleção de preditores estruturados em
árvores, conforme ilustrado na Figura 3 [33]. Para que este classificador funcione, cada árvore que compõe a
floresta depende dos valores de um vetor aleatório, Θ𝑘, amostrado de forma independente e com a mesma
distribuição para todas as árvores.

O elemento comum em procedimentos de ensemble, método que combina múltiplos modelos para
melhorar o desempenho utilizando aleatoriedade, utiliza para a 𝑘-ésima árvore, um vetor aleatório Θ𝑘 é
gerado, independentemente dos vetores aleatórios passados, mas com a mesma distribuição. Uma árvore é
então desenvolvida utilizando o conjunto de treinamento e Θ𝑘, resultando em um classificador ℎ(x,Θ𝑘), onde
x é o vetor de entrada. Após um grande número de árvores ser gerado, elas votam para a classe mais popular.

Formalmente, uma Random Forest é definida como um classificador que consiste numa coleção de
classificadores estruturados em árvores {ℎ(x,Θ𝑘), 𝑘 = 1, . . . }, onde os {Θ𝑘} são vetores aleatórios indepen-
dentes e identicamente distribuídos, e cada árvore lança um voto unitário para a classe mais popular na
entrada x. Uma vez que o número de árvores no forest aumenta, o erro de generalização converge quase
certamente para um limite, o que significa que o overfitting não é um problema.

A precisão do Random Forest depende fundamentalmente de dois fatores: a força dos classificadores
de árvores individuais na floresta e a correlação entre eles. A força (𝑠) é medida pelo valor esperado da função
de margem 𝑚𝑟(X, 𝑌 ), que quantifica a extensão em que o número médio de votos para a classe correta (𝑌 )
excede o voto médio para qualquer outra classe. A correlação média (𝜌) é a correlação entre as funções de
margem bruta de pares de árvores.

Um limite superior para o erro de generalização (𝑃𝐸*) de um Random Forest pode ser expresso em
termos destas duas variáveis: 𝑃𝐸* ≤ 𝜌(1 − 𝑠2)/𝑠2 . Isto implica que, para um bom desempenho, o algoritmo
deve injetar aleatoriedade para minimizar a correlação (𝜌), ao mesmo tempo em que mantém a força (𝑠) dos
classificadores individuais.
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O método proposto no trabalho original [20] alcança isso usando a seleção aleatória de características
para determinar a divisão em cada nó da árvore. A forma mais simples é selecionar aleatoriamente, em cada
nó, um pequeno grupo de variáveis de entrada para realizar a divisão, as árvores são desenvolvidas até o
tamanho máximo e não são podadas.

A utilização da técnica de bagging que consiste em gerar múltiplos conjuntos de treinamento por
amostragem com reposição e combinar os resultados dos modelos treinados, em conjunto com a seleção
aleatória de características, é frequentemente empregada, onde novos conjuntos de treinamento (bootstraps)
são gerados com reposição a partir do conjunto original. Os resultados empíricos mostram que a injeção de
aleatoriedade tem como objetivo uma baixa correlação 𝜌 enquanto mantém uma força razoável.

Figura 3 – Classificação de uma instância através de várias árvores de decisão independentes.

2.4.3 Support Vector Machine

A Support Vector Machine [34] (SVM), anteriormente denominada Support-Vector Network (SVN)
é uma máquina de aprendizado desenvolvida inicialmente para problemas de classificação binária. O conceito
fundamental que a SVN implementa é que os vetores de entrada são transformados de maneira não linear para
um espaço de características de dimensão muito alta, 𝑍, onde é construída uma superfície de decisão linear.
As propriedades dessa superfície de decisão garantem uma alta capacidade de generalização da máquina de
aprendizado.

O principal desafio teórico é encontrar um hiperplano que consiga separar bem os dados, mesmo
quando estão em espaços com muitas características. A resposta para esse problema é a ideia de um hiperplano
ótimo. O hiperplano ótimo é definido como a função de decisão linear que possui a margem máxima entre os
vetores de treinamento das duas classes. A margem é a distância entre a superfície de decisão e os pontos de
dados mais próximos de cada classe, que são chamados de vetores de suporte.

A grande capacidade de generalização da SVN decorre de uma limitação teórica: se os vetores de
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treinamento forem separados sem erros por um hiperplano ótimo como visto na Figura 4 [35], a probabilidade
esperada de erro em um exemplo de teste é limitada superiormente pela razão entre o valor esperado do
número de vetores de suporte e o número de vetores de treinamento.

A limitação não depende da dimensionalidade do espaço de separação, permitindo que o algoritmo
generalize bem mesmo em espaços de características que podem atingir bilhões de dimensões. Para o caso
separável sem erros, o hiperplano ótimo (definido por w0 · z + 𝑏0 = 0) é aquele que minimiza w · w sujeito às
restrições de separação. O vetor de pesos w0 é uma combinação linear dos vetores de suporte z𝑖.

Figura 4 – Representação do hiperplano ótimo e das margens em um classificador SVM, destacando os vetores
de suporte das classes A e B.

Para estender a aplicação da SVN a dados de treinamento não separáveis ou com erros, foi introduzido
o conceito de margem suave. A margem suave permite erros e desvios (𝜉𝑖 > 0) nos dados de treinamento, e o
problema de otimização passa a ser a minimização de uma função que equilibra a maximização da margem
e a penalização dos erros.

O parâmetro 𝐶 no funcional de minimização permite controlar o trade-off entre a complexidade da
regra de decisão, ou seja, a função que determina a classificação de novos exemplos, e a frequência de erro,
sendo essencial para o controle da capacidade de generalização da máquina de aprendizado.

O método do Kernel resolve o problema técnico de trabalhar com espaços de características de
dimensão extremamente alta de forma computacionalmente eficiente. A função de classificação 𝑓(x) de um
vetor de entrada x depende apenas dos produtos escalares entre o vetor de entrada transformado 𝜑(x) e os
vetores de suporte transformados 𝜑(x𝑖).

Em vez de realizar explicitamente essa transformação de alta dimensão, o produto escalar 𝜑(u)·𝜑(v) é
substituído por uma função Kernel 𝐾(u,v), calculada diretamente no espaço de entrada de menor dimensão.

Ao variar a função Kernel, a SVN se torna uma máquina de aprendizado universal, capaz de imple-
mentar diferentes redes de aprendizado, como classificadores polinomiais de grau arbitrário ou máquinas de
Função de Base Radial (RBF). O processo de otimização da SVN é um problema de programação quadrática
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que é resolvido de forma eficiente, determinando a matriz 𝐷𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(x𝑖,x𝑗).

Na matriz, 𝑦𝑖 e 𝑦𝑗 representam os rótulos das amostras 𝑖 e 𝑗, enquanto 𝐾(x𝑖,x𝑗) mede a similaridade
entre essas amostras no espaço definido pelo kernel. Assim, 𝐷𝑖𝑗 combina informação sobre as classes e a
semelhança entre os dados, ao servir como termo quadrático permitindo que a SVN encontre a margem
máxima entre as classes.

2.4.4 Logistic Regression

A Logistic Regression [36] é uma metodologia estatística desenhada para analisar situações onde as
observações, representadas por 𝑌𝑖, tomam apenas dois valores, tipicamente denotados como 0 e 1. O objetivo
é modelar a dependência da probabilidade de um resultado ser 1, denotada 𝜃𝑖 = pr(𝑌𝑖 = 1), em função de
uma ou mais variáveis independentes, 𝑋𝑖.

A formulação padrão reconhece que uma relação linear direta entre a probabilidade 𝜃𝑖 e a variável
independente 𝑋𝑖 é inadequada, exceto em intervalos estreitos, visto que 𝜃𝑖 deve necessariamente permanecer
restrita ao intervalo. Portanto, a forma mais adequada e matematicamente tratável para representar essa
relação é a lei logística:

logit 𝜃𝑖 = log
{︂

𝜃𝑖
1 − 𝜃𝑖

}︂
= 𝛼+ 𝛽𝑋𝑖

Nesta formulação, logit 𝜃𝑖 é a transformação logarítmica da razão de chances, e a relação linear é
estabelecida entre o logit da probabilidade e a variável independente 𝑋𝑖.

O parâmetro 𝛽 é o coeficiente de regressão, que mede a inclinação dessa dependência. O objetivo
primário é fazer inferência sobre 𝛽, tratando 𝛼 como um parâmetro de perturbação. A interpretação de 𝛽 é
que, se 𝜃𝑖 for pequena, 𝛽 representa o aumento fracionário em 𝜃𝑖 por unidade de aumento em 𝑋𝑖; se 1 − 𝜃𝑖

for pequeno, 𝛽 representa a diminuição fracionária em 1 − 𝜃𝑖 por unidade de aumento em 𝑋𝑖.

O processo de classificação e inferência muitas vezes se concentra na distribuição do estatístico
suficiente conjunto para os parâmetros 𝛼 e 𝛽, que são 𝑌 =

∑︀
𝑌𝑖 (o número total de 1’s) e 𝑋 =

∑︀
𝑌𝑖𝑋𝑖.

Para fazer inferência sobre 𝛽 separadamente, a análise é feita condicionalmente no valor observado de 𝑌 (o
número total de 1’s), eliminando assim o parâmetro de perturbação 𝛼.

Em casos mais complexos como na Figura 5 [37], com múltiplas variáveis independentes, a lei logística
é generalizada de forma natural. Para testes de hipóteses nulas ausência de regressão, 𝛽 = 0, os testes
desenvolvidos são não paramétricos, pois a lei logística auxilia apenas na derivação do critério de teste, mas
não na distribuição amostral sob a hipótese nula.

Para fins de estimação, especialmente em amostras grandes, o método de máxima verossimilhança ou
o método de mínimo logit 𝜒2 são as abordagens recomendadas, resultando em cálculos de regressão múltipla,
que podem ser iterativos ou não iterativos, respectivamente.
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Figura 5 – Exemplos de classificação por regressão logística em diferentes cenários: unidimensional, linear,
não linear e multiclasse.

2.4.5 XGBoost

O XGBoost [38] (eXtreme Gradient Boosting) é um sistema escalável de reforço de árvores que se
destaca como um método altamente eficaz e amplamente utilizado em aprendizado de máquina, demonstrado
na Figura 6 [39]. Ele se baseia nos algoritmos de reforço de gradiente de árvores, técnica que constrói um
modelo preditivo em uma maneira aditiva. O modelo final de ensemble de árvores utiliza 𝐾 funções aditivas
para prever o resultado, sendo que a previsão final é a soma das pontuações de cada árvore.

O destaque do XGBoost é a sua função objetivo regularizada. Para um dado conjunto de dados com
𝑛 exemplos, o modelo de ensemble de árvores busca minimizar a seguinte função objetivo regularizada:

𝐿(𝜑) =
∑︁
𝑖

𝑙(𝑦𝑖, 𝑦𝑖) +
∑︁
𝑘

Ω(𝑓𝑘)

onde 𝑙 é uma função de perda convexa e diferenciável que mede a diferença entre a previsão 𝑦𝑖 e o alvo
𝑦𝑖. O termo Ω(𝑓𝑘) é o termo de regularização, que penaliza a complexidade do modelo. Essa regularização
adicional, Ω(𝑓𝑘) = 𝛾𝑇 + 1

2𝜆‖w‖2, onde 𝑇 é o número de folhas da árvore 𝑓𝑘, w o vetor de pesos das folhas
da árvore e 𝜆 o hiperparâmetro que controla a penalização, ajuda a suavizar os pesos finais aprendidos para
evitar o overfitting. Quando o termo de regularização é zerado, o objetivo retorna ao método tradicional de
gradient tree boosting.

O modelo é treinado de forma aditiva, o que significa que, em cada iteração 𝑡, uma nova função de
árvore (𝑓𝑡) é adicionada para otimizar o objetivo, dada a previsão do passo anterior 𝑦(𝑡−1)

𝑖 . Para otimizar
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rapidamente o objetivo em um cenário geral, o XGBoost utiliza uma aproximação de segunda ordem da
função de perda. Após remover os termos constantes, o objetivo simplificado em cada passo 𝑡 depende apenas
dos estatísticos de gradiente de primeira ordem (𝑔𝑖) e de segunda ordem (ℎ𝑖) da função de perda.

Para uma estrutura de árvore 𝑞(x) fixa, a equação simplificada permite calcular o peso ótimo 𝑤*
𝑗 de

cada folha 𝑗, bem como uma pontuação de qualidade da estrutura da árvore 𝐿split. Essa pontuação atua como
uma métrica de impureza similar à usada em árvores de decisão, mas é derivada para uma gama mais ampla
de funções objetivo. Um algoritmo guloso é usado para encontrar a melhor divisão na árvore, que maximiza
a redução de perda dada por 𝐿split.

Figura 6 – Esquema gráfico do modelo XGBoost.

2.5 Trabalhos correlatos

Os trabalhos relacionados dispostos a seguir foram utilizados como embasamento para o presente
estudo. Cada subseção aborda contribuições aplicadas a conjuntos de dados distintos.

2.5.1 Cross-View Contrastive Masked Autoencoders for Bird Species Classification and Map-
ping

O Cross-View Contrastive Masked Autoencoders for Bird Species Classification and Mapping [40]
(BirdSAT), é um framework de Aprendizado Auto-Supervisionado que representa um avanço no campo da
FGVC e no mapeamento ecológico. O modelo propõe aprender um espaço de representação unificado que
é útil para ambas as tarefas, sendo particularmente relevante por enriquecer o espaço de embedding com
metadados disponíveis nas imagens de pássaros ao nível do solo. A inclusão de metadados demonstrou ser
muito eficaz para lidar com o desafio da classificação de espécies, caracterizado pela baixa variação interclasses
e alta variação intraclasses.
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O BirdSAT foi pré-treinado em um novo dataset global chamado Cross-View iNAT 2021 Birds
Dataset, que é intrinsecamente multimodal e cross-view. Este dataset é composto por pares de imagens
de pássaros ao nível do solo, imagens de satélite correspondentes e metadados de aquisição. As imagens
de satélite fornecem ao modelo o contexto do ambiente e do habitat onde o pássaro pode ser encontrado,
ilustrado na Figura 7 [40] exemplos de pares de imagens de satélite e de nível do solo de aves, juntamente
com os metadados associados a cada par.

Figura 7 – Exemplo de dados do Cross-View iNAT-2021 Birds.

Os metadados de aquisição, cruciais para o BirdSAT, fornecem pistas adicionais que podem melhorar
a interpretação e reduzir o número de classes possíveis, sendo utilizados os atributos de localização e tempo.

Os atributos numéricos foram codificados usando o método senoidal-cossenoidal e, em seguida, passa-
dos para uma camada feed-forward que gera um embedding adicionado ao embedding do [cls] token resultante
dos encoders, antes da classificação. O uso da geolocalização e dados como detalhes adicionais que o modelo
pode entender vem de estudos passados que mostram que adicionar informações sobre localização ajuda a
performance na tarefa de FGVC.

O framework utiliza a arquitetura ViT para o pré-treinamento cross-view. Para alcançar um espaço
de embedding comum para as tarefas de FGVC e mapeamento de espécies, o BirdSAT unifica as estratégias
SSL de Contrastive Learning (CL) e Masked Image Modeling (MIM).

Duas abordagens arquiteturais foram propostas para a fusão das modalidades e metadados: o Cross-
View Embed MAE (CVE-MAE), que é uma configuração uni-modal de fusão tardia que usa encoders transfor-
madores separados para cada modalidade, e o Cross-View Metric MAE (CVM-MAE), que é uma configuração
cross-modal de fusão precoce que emprega um único encoder transformador multimodal e decoders separados
por modalidade.

As arquiteturas estão dispostas na Figura 8 [40] onde foi avaliado: (a) um pré-treinamento unimodal
(fusão tardia) e (b) um pré-treinamento multimodal (fusão inicial) do ViT, incorporando metadados e objeti-
vos de reconstrução mascarada e contraste. Os modelos que incorporam metadados alcançaram desempenho
estado da arte na classificação fina de pássaros no iNAT-2021 Birds.
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(a) Cross-View Embed MAE (b) Cross-View Metric MAE

Figura 8 – Frameworks propostos.

2.5.2 Visual WetlandBirds Dataset

O trabalho Visual WetlandBirds Dataset [6] foca na criação e disponibilização do primeiro dataset
de vídeo de granularidade fina especificamente para a detecção de comportamento e classificação de espécies
de pássaros em vídeos.

Devido à crise mundial de desaparecimento de espécies e ao alto preço do acompanhamento de
animais, é muito importante criar sistemas automáticos que possam fornecer informações certas para a
proteção dessas espécies. O escopo principal deste estudo é preencher uma lacuna notável na escassez de
datasets de vídeo de pássaros com anotações detalhadas de comportamento, com exemplos mostrados na
Figura 9 [6].

Figura 9 – Recortes de quadros de vídeo de espécies de pássaros realizando os sete comportamentos que
compõem o conjunto de dados.
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O dataset é composto por 178 vídeos gravados em pântanos espanhóis na região de Alicante, cap-
turando 13 espécies diferentes e 7 classes de comportamento distintas. O que torna o Visual WetlandBirds
especial é que ele dá informações sobre o tempo e o lugar em que os pássaros aparecem, no nível do quadro.
Ele mostra qual é a espécie, onde o pássaro está e o que ele está fazendo a cada instante, indo além de apenas
confirmar que a espécie está ali. Para a tarefa de classificação de espécies, o trabalho utilizou o YOLOv9
como baseline, e para a detecção de comportamento foram avaliados modelos baseados em Transformer e
redes convolucionais.

Apesar de ser o primeiro a fornecer anotações de comportamento, espécie e localização no nível do
quadro para aves em vídeo, o Visual WetlandBirds enfrenta limitações significativas, principalmente rela-
cionadas à sua escala e metodologia de anotação, um desafio primário é a quantidade limitada de dados
disponível para o treinamento de modelos complexos de aprendizado profundo.

O dataset totaliza apenas 178 vídeos, com uma duração total de aproximadamente 58 minutos e 53
segundos. Essa restrição de volume de dados é um fator que demonstra a necessidade de mais recursos para
a captura de informações adicionais.

Outra limitação importante é o desequilíbrio de classes de comportamento. O total de vídeos feitos
sobre comportamentos não é igual para todos, ações como voar e se limpar têm a menor quantidade de vídeos,
porque acontecem menos vezes ou são complicadas de registrar com câmeras que ficam paradas.

O processo de anotação semi-automática impôs critérios que simplificam a complexidade do com-
portamento animal. Primeiramente, quando um pássaro realiza múltiplas atividades simultaneamente, o
protocolo de anotação estipula que apenas um único comportamento pode ser atribuído por quadro. Nesses
casos, o comportamento considerado ecologicamente mais relevante, como alimentar-se, é priorizado sobre
comportamentos locomotores concomitantes, como andar ou nadar.

Para que um conjunto de movimentos seja classificado como um comportamento distinto, ele deve ter
uma duração mínima de 30 quadros. Movimentos mais curtos são rotulados como sub-movimentos do compor-
tamento principal, o que facilita a segmentação e classificação pelos modelos, mas simplifica o comportamento
real.

2.5.3 A Multi-Path Feature Fusion and Spectral–Temporal Attention-Based Model for Bird
Audio Classification

Lu et al. [41] propõem a Dual-path spectro–temporal Attention & Fusion Network (DuSAFNet)
para capturar simultaneamente texturas espectrais locais e dependências temporais de longo alcance nos
espectrogramas de entrada log Mel.

O modelo começa com um backbone compartilhado e é seguido pelo Módulo de Atenção Espectro-
Temporal (STA). O STA recalibra adaptativamente a importância de cada banda de frequência e segmento de
tempo, modelando pesos de Atenção separadamente nos eixos de frequência e tempo. Essa separação permite
que a rede se concentre nas bandas e períodos mais discriminativos, superando as dificuldades das CNNs
tradicionais em capturar informações de frequência absoluta e relações temporais de longo alcance.

O cerne da extração de recursos é o Módulo de Extração de Recursos de Caminho Duplo (DPFM), que
opera em paralelo. A GrowthBranch utiliza unidades de crescimento densamente conectadas para capturar
texturas locais de grão fino, que são sensíveis a variações de frequência de curto prazo.
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Em contraste, a SkipBranch emprega uma estrutura de salto residual para refinar o contexto de longo
alcance, fortalecendo a capacidade do modelo de capturar padrões temporais e cruzados de frequência, a fusão
adaptativa dos recursos destas duas ramificações é realizada pelo Mapeamento de Fusão Controlada (GFM),
um mecanismo de gating leve que ajusta dinamicamente a proporção do fluxo de informações, suprimindo
recursos redundantes e realçando informações críticas para aumentar a eficiência da fusão.

Após a fusão inicial, é utilizado o Módulo de Fusão Temporal e Espacial, que tem duas partes: a
LocalSpanAttention, que analisa as relações de tempo em uma área, e o MultiscaleAttentionModule, que
ajusta as informações em diferentes escalas espaciais e de canais. O objetivo é melhorar a maneira como os
dados são representados, tanto em relação às ligações temporais locais quanto ao ajuste em diferentes escalas
no espaço e nos canais.

Para aumentar a diferença entre espécies que são um pouco diferentes, o DuSAFNet traz um Classi-
ficador ArcMarginProduct Multi-banda. O ArcMarginProduct é aplicado a cada banda com fatores de escala
(𝑠) e margens angulares (𝑚) distintos para aumentar explicitamente a distância angular entre as classes.

A fusão final dos logits de cada banda é feita usando pesos aprendíveis, o que permite ao modelo equi-
librar automaticamente a importância de cada faixa de frequência durante o treinamento, toda arquitetura
é observada na Figura 10 [41].

Figura 10 – Arquitetura geral do DuSAFNet.
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3 MÉTODO DE PESQUISA

Os métodos adotados foram definidos com o objetivo de alcançar uma classificação multimodal das es-
pécies selecionadas por estado, buscando avaliar o desempenho dos modelos a partir de métricas consolidadas
na literatura. A abordagem apresenta caráter quantitativo e experimental, envolvendo a coleta sistemática
dos dados, seu pré-processamento e a avaliação do desempenho das diferentes arquiteturas propostas. A
Figura 11 ilustra de forma geral os processos aplicados.

Fase de avaliação Treinamento dos 
extratores

Treinamento dos 
classificadores 

Preparação 
dos dados

Consulta de 
informações no 

CBRO

Coleta dos dados 
no WikiAves

Pré-
processamento

Divisão de treino 
e teste

Concatenação Classificador

SwinFG

TabTransformer

Avaliação

Figura 11 – Fluxo dos processos aplicados.

3.1 Conjunto de dados

A fim de obter a lista de aves do Brasil, foi consultado o website do Comitê Brasileiro de Registros
Ornitológicos, este que, em sua 13ª edição, publicada em 2021, havia 1950 nomes populares válidos, com
correspondência no WikiAves, onde era possível consultar as fotos e seus metadados correspondentes. A
escolha dos nomes populares foi devida à mudança de nome de alguns táxons, estes que eram descritos de
outra maneira no WikiAves.

A mediana de imagens correspondente para estas espécies válidas foi de 696 e a média, 2700. A
mediana foi adotada como número máximo de imagens que deveriam ser obtidas para cada espécie, assim
mitigando desbalanceamento entre a quantidade de imagens de cada classe.

Como algumas espécies tinham uma quantidade muito pequena de registros, a análise considerou
espécies que tinham mais de 100 fotos, assim não obtendo aquelas que poderiam ser interpretadas como ruído
pelo modelo. Dessa forma, obtivemos espécies com mais de 100 e até 696 registros. A quantidade final de
espécies a serem obtidas foi de 1590.
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Além disso, pela presença de um número muito grande de espécies por estado, a quantidade de
espécies a ser utilizada foi limitada às cinco com maior ocorrência. Essa medida foi necessária para evitar
grande desbalanceamento em um problema de classificação multiclasse.

A partir da quantidade final de espécies definidas no escopo, houve a coleta das imagens corres-
pondentes a cada uma delas, juntamente com os seguintes metadados: id, autor, data, localização, endereço
eletrônico original e o id da espécie. Estes dados serviram, respectivamente, para o treinamento do SwinFG
e do TabTransformer.

3.2 Pré-processamento

Utilizando Python, todos os dados foram separados em suas respectivas pastas, contendo as imagens
de cada indivíduo e um arquivo JavaScript Object Notation (JSON), formato de arquivo para armazena-
mento de dados estruturados. Também foi gerado um novo arquivo JSON que contém todos os metadados
estruturados, a fim de facilitar o acesso.

Em busca de arquivos corrompidos, a etapa identificou quaisquer arquivos cujo tamanho era de 0
kilobytes, ou seja, que estavam corrompidos.

3.3 Divisão dos dados

Todos os dados, sejam eles imagens ou dados tabulares, foram divididos na proporção de 70% para
treino e 30% para teste nos modelos utilizados para a extração. Todos os dados foram estratificados, a fim
de mitigar o desbalanceamento nas amostras.

Já nos modelos utilizados para classificação a divisão foi de 60% para treino, 20% para validação e
20% para teste.

3.4 Modelagem

A abordagem aplicada foi downstream, a aplicação dual-branch resultou em uma abordagem onde
duas arquiteturas foram responsáveis pelo pré-treinamento extraindo as características e cinco efetuando o
treinamento, teste e validação final da classificação. No branch das imagens o SwinFG foi aplicado devido a
sua natureza voltada para tarefas de FGVC que possibilita a extração do vetor de características do modelo
de imagem, para os dados tabulares (metadados), o TabTransformer foi empregado, obtendo por vez os
embeddings relacionados às informações geo-temporais e outros atributos.

Nos modelos empregados para o pré-treinamento, os hiperparâmetros de suas respectivas implemen-
tações originais foram mantidos, a fim de contornar limitações de tempo e recursos computacionais.

Após o processo inicial de pré-treino e classificação das modalidades de forma individual, houve a
concatenação dos vetores responsáveis pelas características tabulares e as de imagem. Diferentes modelos
foram avaliados como Cabeças de classificação, incluindo 𝑘-NN, Random Forest, Support Vector Machine,
Logistic Regression e XGBoost, esses modelos receberam os embeddings das modalidades individuais e por
fim, os embeddings concatenados.
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3.5 Validação e avaliação

Na fase de treino e teste dos modelos extratores, foram utilizados 5 folds estratificados, de maneira
a obter os benefícios da utilização do 𝑘-fold e, ao mesmo tempo, não aumentar o tempo de treinamento.

Os mesmos dados utilizados no treinamento e teste dos dados tabulares também foram utilizados no
treinamento do modelo responsável pelas imagens. Isto é, cada um, em sua forma, seja tabular ou em formato
de imagem, foi separado por um identificador correspondente, tornando possível a concatenação do vetor de
características ao fim do processo, a métrica escolhida para avaliação foi a acurácia, por medir a proporção
de classificações corretas sobre o total de exemplos, tendo uma avaliação direta e interpretável, representada
como:

Acurácia = 𝑁corretas

𝑁total
.

onde 𝑁corretas é o número de previsões corretas do modelo e 𝑁total é o número total de exemplos avaliados.
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4 EXPERIMENTOS

Esta seção apresenta os experimentos realizados para avaliar o desempenho da abordagem proposta,
as seções seguem a ordem de realização das etapas do experimento buscando evidenciar diferenças entre os
métodos aplicados ao problema.

4.1 Cenários de avaliação

Os experimentos foram realizados em três diferentes cenários, sendo o primeiro deles baseado na
utilização de metadados. Nesse conjunto estão englobadas informações como localização, data da observação,
atributos taxonômicos (reino, filo, classe, ordem e família), atributos temporais derivados (ano, mês e dia),
além de identificadores de espécie e nome popular para classificação. Um exemplo de conjunto de atributos
utilizados na classificação pode ser visto na Figura 121.

Foi empregado o TabTransformer para extrair o vetor de características dos metadados, cuja saída
foi posteriormente processada por diferentes classificadores de arquiteturas distintas, de modo a evidenciar
possíveis vantagens ou desvantagens de cada um nesta aplicação.

No segundo cenário o SwinFG serviu como extrator do vetor de características das respectivas ima-
gens associadas aos metadados, a sua saída passou de forma individual pelos mesmos classificadores listados
no texto.

Figura 12 – Exemplo de amostra.

Já no terceiro cenário o vetor de características de ambos os modelos foram concatenados e passaram
pelos exatos mesmos classificadores, isto é, buscando possíveis diferenças presentes nos resultados ao utilizar
os dois vetores juntos, podendo extrair ou não informações relevantes para a classificação. A Figura 12 ilustra
exemplos de entrada onde a fotografia da espécie serve de entrada para o SwinFG e os dados tabulares para
o TabTransformer.
1 https://www.wikiaves.com.br/2965931
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O treinamento de ambos seguiu a mesma configuração, com batch size reduzido, gradient accumula-
tion, otimizador Adam, CrossEntropyLoss, early stopping e 5-fold cross-validation. A Tabela 1 demonstra as
modificações realizadas nos hiperparâmetros onde as motivações foram respectivamente: manter simplicidade,
evitar overfitting, controle temporal, melhor convergência e por fim melhor performance e maior robustez ao
overfitting; os demais valores não listados foram mantidos em seus valores padrão.

Classificador Principais Alterações Configurado Default
𝑘-NN Nenhuma n_neighbors=5 n_neighbors=5
RandomForest max_depth=10 Profundidade limitada Sem limite
SVM max_iter=1000 Iterações limitadas Ilimitado
LogisticRegression max_iter=1000 Mais iterações max_iter=100
XGBoost n_estimators=50, max_depth=4, learning_rate=0.1 Conservador Agressivo

Tabela 1 – Configurações dos classificadores testados.

4.2 Protocolo de execução

A partir das métricas vistas em na Subseção 3.5 os valores de acurácia representam a porção de teste,
os dados foram organizados a partir do 𝑘-fold estratificado de 5 partições, reduzindo o risco de overfitting.

Todo processo sequencial foi realizado com seed calculada a partir do hash da sigla de seu estado
correspondente e normalizada para 32 bits, garantindo que reprodução determinística das modalidades du-
rante o tempo de execução, a partir da aplicação dos folds nos modelos utilizados no pré-treinamento ambos
receberam as mesmas amostras na mesma ordem, tornando possível a concatenação final dos vetores de
características.

Os dados utilizados para o treinamento dos modelos de classificação foram aplicados com uma divisão
de dados de 60% para treino, 20% para validação e 20% para teste, a partir da quantidade maior de repartições
foi possível uma avaliação mais consistente da generalização dos modelos.



51

5 RESULTADOS

A Figura 13 apresenta a distribuição de registros por estado considerando a soma de todas as espécies,
onde a coluna “Total” indica o número geral de amostras obtidas, a coluna “Com Imagem” representa aquelas
para as quais foram possíveis obter e processar ao menos uma imagem, e a coluna “Filtrados” corresponde
às amostras que possuem um nome popular válido e uma imagem processável. Para este trabalho, foram
utilizados os dados categorizados como “Filtrados”.

Figura 13 – Registros por estado.

A Figura 15 contém a distribuição de espécies válidas por estado. São Paulo, Minas Gerais e Mato
Grosso concentram a maior quantidade de registros, enquanto estados como Alagoas, Piauí e Sergipe possuem
valores menores, essa variação mostra tanto o trabalho feito na coleta de amostras quanto a presença de
pessoas que observam em certas áreas, afetando diretamente o equilíbrio dos dados. Dessa forma, foram
aplicados filtros, selecionando apenas as espécies mais representativas em cada estado, conforme descrito na
Seção 3, o comportamento das distribuições pode ser visto na Figura 14.
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Figura 14 – Distribuição das espécies por estado, de maior a menor ocorrência.

Com base nos dados apresentados nas Figuras 11 e 15, a análise selecionou as cinco espécies com
maior ocorrência em cada estado, devido à elevada diversidade de classes no conjunto de dados. Essa escolha
visa mitigar problemas decorrentes do grande número de amostras, resultando em um conjunto de dados
mais balanceado para os experimentos realizados.

Figura 15 – Número de espécies válidas por estado.

A Tabela 9, disponibilizada nos Apêndices devido à sua extensão, demonstra as espécies a serem
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classificadas e suas respectivas quantidades para cada estado.

Na Tabela 2, os classificadores que utilizaram apenas a imagem, obtiveram resultados muito seme-
lhantes nos diversos estados da região, indicando que os atributos visuais extraídos não foram suficientes para
uma classificação de maior acurácia, em cenários onde a concatenação foi realizada observamos uma piora
nos resultados, exceto no estado de Santa Catarina. Os resultados tabulares apresentam um comportamento
consistente.

O desempenho relativamente baixo do modelo que utilizou as características extraídas da imagem
sugere que as informações obtidas não carregam atributos discriminantes que melhorem a classificação.

Tabela 2 – Acurácia de Teste por Estado - Região Sul

Estado Tabular Imagem Concatenado
PR 0.9118 0.3162 0.9044
RS 0.7223 0.3308 0.7132
SC 1.0000 0.3728 1.0000

Média 0.8780 0.3399 0.8725

A região demonstrada na Tabela 3 apresenta que diferentemente da região vista na Tabela 2 houve
um modelo que performou uma acurácia inferior a 0,70. Outro aspecto importante é que, nesta região a
concatenação obteve o mesmo resultado ou apresentou ganhos.

Além da média dos resultados serem superiores à da tabela da região Sul, as informações extraídas do
modelo de imagem do Sudeste foram discriminantes o suficiente para obter melhoras em termos de acurácia
ao realizar a concatenação, isto é, as informações obtidas tiveram características discriminativas que não
estavam presentes apenas no embedding extraído do modelo tabular, essa característica pode estar associada
ao número diferente de amostras em cada região.

Tabela 3 – Acurácia de Teste por Estado - Região Sudeste

Estado Tabular Imagem Concatenado
ES 0.8462 0.4487 0.8897
MG 1.0000 0.3260 1.0000
RJ 0.6346 0.3107 0.6761
SP 0.9121 0.3919 0.9121

Média 0.8482 0.3693 0.8695

No Norte representado pela Tabela 4, há uma variação maior entre os estados, indicando possível
diferença na distribuição ou na qualidade dos dados. O modelo concatenado apresentou ganhos sutis em
alguns estados, o modelo de imagem nesta região de forma isolada continua demonstrando dificuldade para
extrair informações relevantes perante a complexidade visual das amostras.
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Tabela 4 – Acurácia de Teste por Estado - Região Norte

Estado Tabular Imagem Concatenado
AC 0.6465 0.2323 0.6364
AM 0.7140 0.3706 0.6937
AP 0.6692 0.3154 0.6923
PA 0.8300 0.3374 0.8645
RO 0.8365 0.2644 0.8173
RR 0.8080 0.2834 0.8173
TO 1.0000 0.3397 1.0000

Média 0.7863 0.3062 0.7888

O Nordeste, presente na Tabela 5 por sua vez manteve o mesmo padrão observado em outras regiões,
no estado do Piauí que figurava dentre os de maior acurácia, ao realizar a concatenação apresentou um
resultado de menor acurácia quando comparado ao modelo que utilizou apenas os dados tabulares. Em três
estados a acurácia atingiu o valor máximo, sugerindo que os atributos tabulares capturaram os padrões
necessários para que a classificação performasse de forma ótima no cenário apresentado.

Tabela 5 – Acurácia de Teste por Estado - Região Nordeste

Estado Tabular Imagem Concatenado
AL 0.8605 0.3430 0.8663
BA 1.0000 0.3009 1.0000
CE 0.8893 0.3811 0.8955
MA 1.0000 0.3568 1.0000
PB 0.8050 0.3648 0.8050
PE 0.8333 0.3485 0.8428
PI 0.9114 0.3165 0.8861
RN 1.0000 0.4309 1.0000
SE 0.8421 0.4474 0.8421

Média 0.9046 0.3655 0.9042

No Centro-Oeste retratado na Tabela 6 novamente há tendência no melhor desempenho dos modelos
tabulares sobre os modelos de imagem, reforçando a dificuldade de aprendizado visual isolado diante dos
padrões apresentados.

Tabela 6 – Acurácia de Teste por Estado - Região Centro-Oeste

Estado Tabular Imagem Concatenado
DF 0.9727 0.4044 0.9563
GO 0.8950 0.3591 0.9061
MS 0.8830 0.3333 0.8883
MT 0.8603 0.2615 0.8443

Média 0.9028 0.3396 0.8988

Por outro lado, o exterior representado na Tabela 7 vemos que, a região foi a que mais apresentou
ganho na concatenação, isso demonstra que os dois embeddings de forma individual possuem características
únicas e que, quando concatenados, conseguem discriminar melhor as características e obter um melhor
resultado.
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Tabela 7 – Acurácia de Teste por Estado - Região Exterior

Estado Tabular Imagem Concatenado
EX 0.6575 0.3950 0.7459

Média 0.6575 0.3950 0.7459

Por fim, a Tabela 8 detalha os resultados gerais considerando todas regiões abordadas, a mesma
ilustra a diferença entre a acurácia das diferentes modalidades em diferentes métricas.

Tabela 8 – Estatísticas Descritivas por Modalidade - Todas as Regiões

Modalidade Média Mediana Desvio Padrão Mínimo Máximo
Tabular 0.8550 0.8604 0.1159 0.6346 1.0000
Imagem 0.3458 0.3414 0.0533 0.2323 0.4487

Concatenado 0.8606 0.8762 0.1087 0.6364 1.0000

As Figuras 16 e 17 demonstram, de forma visual, a diferença entre os melhores resultados obtidos
em cada modalidade em todas áreas e a diferença entre a acurácia ao realizar as concatenações. Na Figura 16
indica que, são poucos os modelos classificadores que receberam apenas a imagem e que conseguem ultrapassar
o limiar de 0,4 no gráfico.

Figura 16 – Melhores acurácias obtidas nas regiões analisadas.

Na Figura 17 os valores indicam que a maioria dos modelos que receberam a concatenação obtiveram
resultados iguais ou melhores, ocorrendo em ambas modalidades.
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Figura 17 – Comparativo entre os ganhos obtidos através da concatenação.

O resultado das acurácias detalhadas por modelo podem ser visualizado na Tabela 10 presente nos
Apêndices, por conter grande quantidade de informações a mesma foi movida para manter a continuidade do
texto.

A Figura 18 ilustra a relação entre volume amostral e o desempenho da classificação por moda-
lidades, temos independência notável entre essas variáveis, correlações desprezíveis para dados tabulares e
concatenados e correlação fraca para imagens.

A modalidade de imagem mesmo tendo acurácias consistentemente inferiores ainda continua a apre-
sentar um comportamento que não depende da quantidade de dados. Isso mostra que há limites naturais nas
imagens e não no número de exemplos. O Acre, sendo um caso diferente na forma combinada, destaca que
certas características da região têm mais impacto no resultado do que o número de amostras.

Figura 18 – Análise híbrida da relação entre tamanho de dataset e desempenho de classificação por modali-
dade.
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A Figura 19 apresenta dois comparativos que relacionam métricas de distribuição de espécies por
estado com a acurácia do classificador por imagem. No painel esquerdo, o índice de Shannon de diver-
sidade/igualdade é realizado contra a acurácia, valores baixos indicam ambientes onde a distribuição de
abundâncias é muito desigual, já valores altos representam abundâncias mais uniformes, a relação negativa
mostra que locais com mais variedade e distribuição mais uniforme costumam ter resultados menores no
modelo de imagens.

No painel direito, o índice de dominância, isto é, quando poucas espécies predominam mostra corre-
lação positiva com a acurácia, sinalizando que algumas relações têm resultados melhores quando há poucas
espécies envolvidas.

As relações sugerem que a composição da comunidade influencia fortemente o desempenho do clas-
sificador. Quando há uma ou poucas espécies que são mais comuns, o modelo consegue identificar padrões de
maneira mais clara. Por outro lado, quando a comunidade tem mais variedade e está mais equilibrada, fica
mais complicado realizar essa tarefa.

Figura 19 – Relação entre amostras e acurácia dos classificadores por modalidade.

A distribuição de gaps entre algoritmos por modalidade está disposta na Figura 20, apresentando
diferenças na robustez à seleção dos algoritmos entre os três domínios do problema. A modalidade tabular
fica próxima a zero, a escolha do algoritmo de classificação exerce impacto mínimo no desempenho final,
83,6% dos gaps estão abaixo de 5%, sugerindo que os algoritmos apresentam desempenhos similares quando
aplicados aos dados tabulares.

O domínio de imagem demonstra uma distribuição mais dispersa e com formato indicativo de alta
variabilidade. Em 35% dos casos os gaps foram superiores a 15%, alcançando valores de até 37,3%, a escolha
do modelo é um fator determinante para o resultado.

Na modalidade onde os dados foram concatenados tem um comportamento intermediário, a distri-
buição é concentrada similar ao visto nos dados tabulares mas com a presença de alguns outliers. Tendo
82,2% gaps abaixo de 5% a abordagem é relativamente robusta à escolha do algoritmo, obtendo benefício da
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concatenação dos dados. A integração indica que a concatenação dos dados mitiga a sensibilidade à escolha
do algoritmo, oferecendo maior estabilidade preditiva.

Figura 20 – Distribuição de gaps de desempenho entre algoritmos por modalidade de dados.

A distribuição dos melhores classificadores por modalidade demonstra que para cada domínio do
problema apresentado uma modalidade de classificador se mostra mais especializada, conforme demonstrado
na Figura 21.

O 𝑘-Nearest Neighbors em 32,1% dos estados acaba por performar melhor em dados tabulares, isto
é, a eficácia da similaridade local tende a funcionar melhor, o XGBoost apresenta melhor desempenho em
35,7% dos dados de imagem, indicando que métodos mais robustos tendem a funcionar melhor ao tentar
capturar complexidades visuais presentes nos embeddings.

Na modalidade concatenada existe uma distribuição equilibrada entre LogisticRegression, Random
Forest e XGBoost, a fusão multimodal criou um espaço de características híbrido explorável por diferentes
paradigmas, algo que não ocorria antes, cada tipo de representação possui características distintivas que
favorecem estratégias classificatórias específicas.



59

Figura 21 – Melhor classificador por modalidade.





61

6 CONCLUSÃO

A utilização de dados de ciência aberta embora tenha possibilitado o estudo apresentou disparidade
na distribuição dos dados por estado, tal fenômeno pode ser ligado à ocorrência desses próprios avistamentos
por entusiastas, isto é, por mais que a ciência cidadã forneça mais amostras os experimentos ligados a ela
ainda são dependentes da distribuição geográfica dos contribuintes. A distribuição das espécies indica que
a maior quantidade de indivíduos está concentrada no primeiro e último quartil, especialmente no último,
indicando que poucas espécies dominam as ocorrências enquanto muitas são incomuns, a delimitação de
escopo é dependente do domínio do problema.

Com relação a performance de cada arquitetura, a quantidade de amostras não apresentou alta
correlação com a acurácia obtida. A diferença de performance foi mais atribuída a escolha da arquitetura,
principalmente no cenário onde apenas as imagens foram utilizadas como entrada, no cenário onde utiliza-
mos apenas os dados tabulares ou a concatenação das modalidades obtivemos resultados muito próximos,
indicando que a escolha do modelo não tem grande peso nos resultados na ótica da métrica escolhida.

Os modelos classificadores atingiram no cenário de teste uma média de acurácia de 0,8550 para
tabular, 0,3458 para imagem e 0,8606 para concatenado, a modalidade tabular por si só demonstrou ser uma
escolha viável para contornar um problema de Classificação Visual Fina que apresentou ser mais difícil de
resolver no domínio das imagens, a partir dos resultados de relação entre amostras e acurácia, os modelos
tendem a acertar a classe majoritária inflando a acurácia geral.

A concatenação demonstra ganho de acurácia na maioria dos cenários em que foi aplicada, princi-
palmente no domínio de imagem, este que apresentou menor desempenho.

Por fim, a concatenação dos dois embeddings nesse modelo downstream oferece a possibilidade de um
trade-off, por mais que a acurácia não apresente ganhos significativamente grandes, a abertura de um novo
espaço de características híbrido combina a estabilidade do tabular com a expressividade das imagens, isso
garante menor sensibilidade à escolha do algoritmo e boa capacidade de representação. Essa característica
abre possibilidades para um classificador com maior desempenho computacional e resultados próximos ao de
melhor performance.

Em geral, o presente trabalho apresentou uma abordagem para classificação multimodal de pássaros
em território nacional, oferecendo uma baseline para o estudo da aplicação de diferentes arquiteturas no
cenário de um problema downstream de Classificação Visual Fina.

6.1 Trabalhos futuros

Os pontos aqui abordados podem ser utilizados para melhorar a acurácia e o desempenho computa-
cional de classificadores utilizados no monitoramento de espécies ou em outras iniciativas de conservação. Por
meio de arquiteturas baseadas em Transformer e de sua dinâmica de concatenação de embeddings, surge a
viabilidade de explorar dados de ciência cidadã, aproveitando a distribuição de pessoas próximas aos habitats
dessas espécies.

Considerando as limitações e resultados dispostos, é viável que trabalhos futuros explorem as espécies
presentes em outras áreas da distribuição utilizando outras métricas, verificando se o comportamento de
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relação das amostras e acurácia continua o mesmo na medida que diminuímos as amostras disponíveis para
o modelo, também fica aberta a possibilidade da aplicação de métodos de Hyperparameter tuning.

Outro ponto a ser investigado é a substituição das arquiteturas presentes nas branches. Principal-
mente a de imagem a fim de realizar comparações na extração de características presentes nas imagem das
espécies dispostas.

Finalmente, a utilização de um modelo monolítico single-branch é uma possibilidade a se explorar
visando obter maior explicabilidade dos resultados perante a extração das características devido ao menor
número de arquiteturas envolvidas.
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Tabela 9 – Registros completos de espécies por estado após filtragens.

Estado Espécie Quantidade
AC agulha-de-garganta-branca 342

periquito-de-cabeça-suja 303
ariramba-castanha 292
ariramba-da-capoeira 274
anambé-de-cara-preta 271

AL saíra-pintor 284
picapauzinho-de-pernambuco 190
papa-taoca-de-pernambuco 140
maria-de-barriga-branca 123
anumará 120

AM araçari-negro 639
galo-da-serra 605
capitão-de-bigode-carijó 595
papagaio-da-várzea 559
rabo-de-arame 553

AP uirapuru-vermelho 186
caboclinho-lindo 136
caraxué 115
formigueiro-de-cabeça-preta 107
iratauá-grande 105

BA beija-flor-de-gravata-vermelha 696
arara-azul-de-lear 696
gravatazeiro 695
saíra-pérola 650
anambé-de-asa-branca 601

CE soldadinho-do-araripe 696
cara-suja 596
vira-folha-cearense 417
maria-do-nordeste 366
jacucaca 364

DF capacetinho-do-oco-do-pau 312
maria-preta-do-nordeste 226
limpa-folha-do-brejo 183
pula-pula-de-sobrancelha 102
bacurau-de-rabo-maculado 89
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Tabela 9 – Registros completos de espécies por estado após filtragens.

Estado Espécie Quantidade
ES mutum-de-bico-vermelho 525

rabo-branco-mirim 500
tiriba-de-orelha-branca 354
chauá 334
furriel 236

EX pelicano 541
ganso-de-magalhães 345
garça-moura-europeia 315
tesoura-do-campo 305
marreca-oveira 303

GO tiriba-do-paranã 277
pato-corredor 182
cardeal-do-araguaia 170
papagaio-galego 139
vite-vite-de-cabeça-cinza 136

MA garça-tricolor 250
chupa-dente-de-capuz 211
rabo-branco-do-maranhão 200
aracuã-de-sobrancelhas 174
araponga-do-nordeste 156

MG beija-flor-de-gravata-verde 696
pato-mergulhão 645
andarilho 641
maxalalagá 612
rolinha-do-planalto 595

MS tiriba-fogo 696
rapazinho-do-chaco 679
periquito-de-cabeça-preta 569
arapaçu-do-campo 441
jacutinga-de-garganta-azul 433

MT tiriba-do-madeira 519
cujubi 502
saíra-de-cabeça-azul 502
capitão-de-cinta 494
jacu-de-barriga-castanha 484
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Tabela 9 – Registros completos de espécies por estado após filtragens.

Estado Espécie Quantidade
PA jacupiranga 579

tiriba-de-hellmayr 432
ararajuba 392
asa-de-sabre-de-cauda-escura 323
arapaçu-de-listras-brancas-do-leste 304

PB saíra-pintor 235
chororó-didi 178
papa-taoca-de-pernambuco 141
gavião-gato-do-nordeste 122
maria-de-barriga-branca 116

PE atobá-de-pé-vermelho 668
grazina 540
juruviara-de-noronha 508
trinta-réis-preto 465
rabo-de-palha-de-bico-laranja 456

PI arapaçu-do-nordeste 127
chupa-dente-de-capuz 81
canário-do-amazonas 75
caneleiro-enxofre 55
asa-de-telha-pálido 55

PR bicudinho-do-brejo 404
cisqueiro 339
arredio-oliváceo 206
tico-tico-de-costas-cinza 205
gralha-picaça 202

RJ formigueiro-de-cabeça-negra 603
formigueiro-do-litoral 595
papa-moscas-estrela 381
vite-vite 374
saudade 332

RN chorozinho-de-papo-preto 268
picapauzinho-da-caatinga 197
joão-xique-xique 171
maçarico-de-costas-brancas 148
caneleiro-enxofre 120
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Tabela 9 – Registros completos de espécies por estado após filtragens.

Estado Espécie Quantidade
RO gaturamo-de-bico-grosso 243

periquito-de-cabeça-suja 238
curica-de-bochecha-laranja 196
maria-da-praia 190
picapauzinho-dourado 169

RR periquito-de-bochecha-parda 448
joão-pinto-amarelo 444
choca-de-crista-preta 441
papa-capim-cinza 413
téu-téu-da-savana 389

RS joão-da-palha 678
caminheiro-de-unha-curta 664
caminheiro-de-espora 659
boininha 653
batuíra-de-coleira-dupla 637

SC maria-catarinense 666
papagaio-charão 566
aracuã-escamoso 472
flamingo-dos-andes 467
tapaculo-ferreirinho 442

SE chorozinho-de-papo-preto 66
jandaia-verdadeira 52
pipira-preta 24
papa-taoca-da-bahia 23
maçarico-branco 21

SP bicudinho-do-brejo-paulista 696
topetinho-verde 569
papagaio-de-cara-roxa 543
maria-leque-do-sudeste 520
não-pode-parar 514

TO pica-pau-da-taboca 354
pato-corredor 283
chororó-de-goiás 275
cardeal-do-araguaia 203
garça-da-mata 193

Tabela 10 – Acurácia de Teste - Todos os Classificadores (Todos os Estados)

Estado Modalidade 𝑘-NN LogReg RandomForest SVM XGBoost
AC Tabular 0.5859 0.5926 0.6364 0.5926 0.6465
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Tabela 10
Estado Modalidade 𝑘-NN LogReg RandomForest SVM XGBoost
AC Imagem 0.2121 0.2323 0.2222 0.2222 0.2222
AC Concatenado 0.6094 0.6364 0.6195 0.5724 0.6195

AL Tabular 0.8140 0.8605 0.8547 0.8605 0.8547
AL Imagem 0.2151 0.3430 0.2733 0.3372 0.2733
AL Concatenado 0.7791 0.8663 0.8140 0.8663 0.8256

AM Tabular 0.6751 0.6193 0.7140 0.5888 0.6734
AM Imagem 0.2893 0.3316 0.3587 0.3249 0.3706
AM Concatenado 0.6108 0.6650 0.6497 0.6328 0.6937

AP Tabular 0.6615 0.6692 0.6538 0.6615 0.6462
AP Imagem 0.2308 0.2308 0.2615 0.3154 0.2615
AP Concatenado 0.6385 0.6154 0.6538 0.6692 0.6923

BA Tabular 1.0000 1.0000 1.0000 1.0000 1.0000
BA Imagem 0.2530 0.2754 0.2964 0.2799 0.3009
BA Concatenado 1.0000 1.0000 1.0000 1.0000 1.0000

CE Tabular 0.8668 0.8893 0.8893 0.8730 0.8832
CE Imagem 0.2930 0.3811 0.3730 0.3607 0.3730
CE Concatenado 0.8402 0.8873 0.8852 0.8770 0.8955

DF Tabular 0.9617 0.9727 0.9672 0.9454 0.9672
DF Imagem 0.3333 0.3880 0.3279 0.4044 0.3443
DF Concatenado 0.9290 0.9563 0.9454 0.9399 0.9563

ES Tabular 0.8462 0.8154 0.8385 0.8282 0.8462
ES Imagem 0.3590 0.3513 0.4333 0.3590 0.4487
ES Concatenado 0.8487 0.8564 0.8897 0.8590 0.8846

EX Tabular 0.6326 0.6547 0.6243 0.6575 0.6381
EX Imagem 0.2845 0.3757 0.3343 0.3950 0.3343
EX Concatenado 0.7155 0.7459 0.6961 0.7403 0.6878

GO Tabular 0.8674 0.8729 0.8950 0.8508 0.8840
GO Imagem 0.2541 0.2873 0.3204 0.2983 0.3591
GO Concatenado 0.8619 0.8840 0.9006 0.8453 0.9061

MA Tabular 1.0000 1.0000 1.0000 1.0000 1.0000
MA Imagem 0.2462 0.3568 0.2714 0.3417 0.3015
MA Concatenado 0.9950 1.0000 1.0000 1.0000 1.0000

MG Tabular 1.0000 1.0000 1.0000 1.0000 0.9969
MG Imagem 0.2712 0.2680 0.3260 0.2853 0.3260
MG Concatenado 0.9984 1.0000 1.0000 1.0000 0.9969

MS Tabular 0.8759 0.8741 0.8812 0.8652 0.8830
MS Imagem 0.2589 0.2748 0.3245 0.2287 0.3333
MS Concatenado 0.8617 0.8723 0.8723 0.8652 0.8883
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Tabela 10
Estado Modalidade 𝑘-NN LogReg RandomForest SVM XGBoost

MT Tabular 0.8603 0.8463 0.8483 0.8044 0.8503
MT Imagem 0.2315 0.2255 0.2575 0.2116 0.2615
MT Concatenado 0.8044 0.8383 0.8144 0.7964 0.8443

PA Tabular 0.8177 0.7857 0.8202 0.7882 0.8300
PA Imagem 0.2611 0.3251 0.3079 0.3374 0.2906
PA Concatenado 0.8547 0.8645 0.8498 0.8547 0.8645

PB Tabular 0.8050 0.7862 0.7987 0.7925 0.7862
PB Imagem 0.3019 0.3522 0.3082 0.3648 0.3585
PB Concatenado 0.7610 0.7736 0.7862 0.8050 0.8050

PE Tabular 0.8201 0.8068 0.8295 0.8239 0.8333
PE Imagem 0.2973 0.3371 0.3277 0.3295 0.3485
PE Concatenado 0.8314 0.8314 0.8428 0.8239 0.8314

PI Tabular 0.8734 0.8481 0.9114 0.8481 0.8608
PI Imagem 0.3165 0.3165 0.2658 0.3038 0.2532
PI Concatenado 0.6962 0.7975 0.8861 0.6329 0.8101

PR Tabular 0.8787 0.9118 0.9081 0.8787 0.9007
PR Imagem 0.2794 0.3162 0.3088 0.3162 0.2610
PR Concatenado 0.8750 0.9044 0.8824 0.8787 0.8934

RJ Tabular 0.6083 0.5886 0.6346 0.5733 0.6258
RJ Imagem 0.2713 0.3042 0.2757 0.3020 0.3107
RJ Concatenado 0.6433 0.6761 0.6455 0.6608 0.6652

RN Tabular 1.0000 1.0000 1.0000 1.0000 0.9945
RN Imagem 0.3370 0.4309 0.3757 0.4309 0.3923
RN Concatenado 0.9834 1.0000 1.0000 1.0000 0.9945

RO Tabular 0.8077 0.7933 0.8173 0.7788 0.8365
RO Imagem 0.2212 0.1827 0.2644 0.1731 0.2163
RO Concatenado 0.8173 0.8125 0.8125 0.8029 0.8125

RR Tabular 0.8056 0.8080 0.8080 0.8080 0.8080
RR Imagem 0.2553 0.2834 0.2810 0.2623 0.2717
RR Concatenado 0.8080 0.8103 0.8173 0.8033 0.7963

RS Tabular 0.7102 0.6692 0.7223 0.5933 0.7086
RS Imagem 0.2792 0.3171 0.3232 0.3308 0.3247
RS Concatenado 0.6449 0.7011 0.6904 0.6616 0.7132

SC Tabular 1.0000 1.0000 1.0000 1.0000 0.9981
SC Imagem 0.3098 0.3155 0.3690 0.3040 0.3728
SC Concatenado 0.9943 1.0000 1.0000 1.0000 0.9981

SE Tabular 0.7368 0.8421 0.8158 0.8158 0.7895
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Tabela 10
Estado Modalidade 𝑘-NN LogReg RandomForest SVM XGBoost
SE Imagem 0.4211 0.4474 0.2895 0.4474 0.3421
SE Concatenado 0.7368 0.8421 0.7105 0.7632 0.7632

SP Tabular 0.8770 0.9104 0.9121 0.8787 0.9069
SP Imagem 0.3111 0.3919 0.3497 0.3620 0.3814
SP Concatenado 0.8805 0.9121 0.8893 0.8840 0.8946

TO Tabular 1.0000 1.0000 1.0000 1.0000 0.9962
TO Imagem 0.3015 0.3206 0.3206 0.2481 0.3397
TO Concatenado 1.0000 1.0000 1.0000 1.0000 0.9962
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