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RESUMO

Este trabalho explora o uso de dados de ciéncia aberta para a classificacdo multimodal de aves no territorio
brasileiro, destacando disparidades na distribuicdo dos dados entre os estados. Essas diferencas provavelmente
estao relacionadas a ocorréncia dos avistamentos reportados por cidadaos, indicando que, embora a ciéncia
cidada aumente a disponibilidade de amostras, os experimentos ainda dependem da distribuicao geografica
dos colaboradores. A distribui¢do das espécies indica que a maior quantia de individuos estd concentrada no
primeiro e dltimo quartil, especialmente no tltimo, indicando que poucas espécies dominam as ocorréncias
enquanto muitas sdo incomuns, a delimitacdo de escopo é dependente do dominio do problema. Em relacao
ao desempenho dos modelos, a quantidade de exemplos ndo mostrou uma ligacdo forte com a acurécia.
As mudangas na performance foram, em grande parte, por conta da arquitetura escolhida, principalmente
quando s6 imagens foram usadas. Nos casos em que s6 dados em forma de tabela foram usados ou quando as
duas modalidades foram combinadas, os resultados foram semelhantes, indicando que a escolha do modelo
tem um efeito pequeno sobre a métrica utilizada. Os classificadores alcancaram médias de acuracia de 0,8550
para dados tabulares, 0,3458 para imagens e 0,8606 para a combinacao das modalidades. A concatenacao
dos embeddings das duas modalidades demonstrou ganho de acuracia em alguns cenarios, criando um espago
hibrido de caracteristicas que combina a estabilidade dos dados tabulares com a expressividade das imagens.
Essa abordagem reduz a sensibilidade a escolha do algoritmo e oferece boa capacidade de representagao. De
modo geral, este estudo estabelece uma baseline para a classificacdo multimodal de aves no Brasil e fornece
subsidios para a aplicagdo de diferentes arquiteturas em problemas de Classificacdo Visual Fina.

Palavras-chave: Classificacao Multimodal. Classificagao Visual Fina. Arquiteturas Transformer. Classifica-

¢ao Downstream. Ciéncia Cidada.
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ABSTRACT

This work explores the use of open science data for multimodal bird classification in Brazil, highlighting dis-
parities in data distribution across states. These differences are likely related to the occurrence of sightings
reported by citizen scientists, indicating that, although citizen science increases sample availability, exper-
iments still depend on the geographic distribution of contributors. Species distribution indicates that the
highest number of individuals is concentrated in the first and last quartiles, especially in the last one, sug-
gesting that few species dominate occurrences while many are rare, and that the scope delimitation depends
on the problem domain. Regarding model performance, the number of samples did not show a strong correla-
tion with accuracy. Performance variations were largely due to the chosen architecture, especially when only
images were used. In scenarios where only tabular data was used or when both modalities were combined,
results were similar, indicating that model choice has limited effect on the selected metric. The classifiers
achieved average accuracies of 0.8550 for tabular data, 0.3458 for images, and 0.8606 for the combination of
modalities. The concatenation of embeddings from both modalities showed accuracy gains in some scenarios,
creating a hybrid feature space that combines the stability of tabular data with the expressiveness of images.
This method makes it less affected by the choice of algorithm while still offering powerful representation
abilities. In conclusion, this research sets a standard for bird classification in Brazil using multiple data types
and offers ideas for using various designs in detailed visual classification challenges.

Keywords: Multimodal Classification. Fine-Grained Visual Classification. Transformer Architectures. Downs-

tream Classification. Citizen Science.
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1 INTRODUCAO

Estudos recentes demonstram que a conversao de habitats naturais em mosaicos de uso antrépico
(e.g., agricultura, pastagens) reduz a riqueza de espécies, afetando principalmente as sensiveis as bordas e

dependentes de fragmentos florestais extensos [1].

O aumento das atividades relacionadas a agricultura industrial vem impactando o habitat das espé-
cies em solo brasileiro. Um exemplo é a Amazo6nia, onde espécies comuns demonstram contribui¢oes tnicas

para o ecossistema [2].

A presenca humana decorrente da atividade econémica pode ser observada tanto no surgimento de
novos moradores em areas de mata, semelhante ao ocorrido entre 1960 e 1980, quando a populagao de Manaus
triplicou com a criagdo do Distrito Industrial [3], quanto nas rodovias que interligam a regido ao resto da
Amazoénia. Estas servem para transportar produtos retirados das dreas exploradas, atuando como vetores

ativos que impulsionam a interiorizacdo da destruigdo florestal [4].

Esse avango humano sobre as dreas naturais nao afeta apenas a vegetacao, mas também a fauna local,
segundo o Comité Brasileiro de Registros Ornitolégicos' (CBRO), o conhecimento ornitolégico no Brasil vem
crescendo gragas a contribuigoes, especialmente por fotografias. Seu conteiido serve como base taxondmica
avidria para o maior portal de ciéncia cidada sobre aves brasileiras na internet, o Wiki Aves? [5]. A invasao
humana no habitat desses animais ao longo do tempo e o préprio avanco da tecnologia facilitam a coleta de

dados por entusiastas e cientistas.

A identificacdo automatizada de espécies por meio do monitoramento é fundamental para a conser-

vagdo ecoldgica, especialmente em cenérios de perda de biodiversidade [6].

No entanto, embora a urbanizagao e a industrializacao representem desafios para a preservacao dessas
espécies em seu habitat natural, a classificacdo das que apresentam maior incidéncia ao longo dos anos obtém
viabilidade por meio do treinamento de modelos. Estas estdo presentes na Lista de Aves do Brasil® e também

no Wiki Aves, onde é disponibilizado um acervo de fotografias juntamente com metadados associados.

Tais informacoes, colhidas ao longo do tempo, podem ajudar a distinguir, catalogar e registrar a
incidéncia das espécies tanto em localidades ja conhecidas quanto em novas, podendo ainda revelar possiveis
padroes de migracdo desses animais. Esse processo é essencial para compreender os efeitos do avango da
presenca humana e das mudancas decorrentes sobre a fauna, permitindo identificar como ocorre a adaptagao
das espécies em ambientes antropicos. Desse modo, a classificacdo automatizada contribui para mitigar a

perda de biodiversidade e a fragmentacao dos habitats naturais.

Este trabalho propde a classificagdo multimodal de passaros em territorio nacional utilizando suas
imagens e seus respectivos metadados geo-temporais, escolha fundamentada na natureza do conjunto de dados
disponivel, oriundo de iniciativas de ciéncia cidada. A fusao multimodal permite que informagoes contextuais,

como localizacao, atributos taxonémicos e temporais facam parte da classificacio juntamente com as imagens.

O Capitulo 2 apresenta a fundamentagao tedrico-metodologica e os trabalhos correlatos; O Capitulo 3

https://www.cbro.org.br/
https://www.wikiaves.com.br/

3 https://www.cbro.org.br/listas/
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contém o método de pesquisa do trabalho; O Capitulo 4 descreve os experimentos, e os resultados estdo

presentes no Capitulo 5; E por fim, a conclusao é descrita no Capitulo 6.
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2 FUNDAMENTACAO TEORICA

A arquitetura Transformer [7] foi criada para resolver os problemas de paralelizagdo que existiam
nas Redes Neurais Recorrentes [8] (RNNs) e nas convolugdes usadas em tarefas de transdugio de sequén-
cias. Arquiteturas como a Long Short-Term Memory [9] (LSTM) e General Regression Neural Network [10]
(GRNNs) tinham limitacoes intrinsecas com relagao a paralelizagdo dentro dos exemplos de treinamento, um

problema para sequéncias de maior comprimento.

A ideia por tras do Transformer é que, ao contrario das outras estruturas, ele ndo precisa usar
recorréncias ou convolugdes, utilizando mecanismos de Atengdo em seu lugar [7]. O mecanismo de Atengao
funciona associando trés vetores: queries, keys e values, cada posicao da entrada produz estes vetores, a partir
disso a Atengao calcula a compatibilidade entre cada query e todas as keys, gerando pesos que determinam

quanto cada value contribui para a saida.

A Atencéo consiste em atribuir pesos diferentes as partes da entrada, de maneira que o modelo seja
mais seletivo em elementos mais relevantes, o mecanismo mede a relacdo entre cada elemento da sequéncia

com os demais, gerando uma combinagdo ponderada.

Através da Autoatencao o Transformer avalia a importancia relativa de cada entrada em relagao aos
outros elementos da sequéncia, diferentemente de arquiteturas que utilizam a recorréncia para processar os
dados de forma sequencial e dependem de estados internos, a Atencao considera toda a sequéncia ao atribuir
pesos para a informacao de cada token com relagao a sua representacao final. Em arquiteturas baseadas em
convolugao as caracteristicas locais sao extraidas através de filtros deslizantes sobre a vizinhanga espacial,

diferente do Transformer que ndo assume relagoes locais.

O mecanismo de Autoatencao o Transformer reduz o niimero minimo de operagbes sequenciais ne-
cessarias, tornando mais facil a modelagem de dependéncias de longo alcance e facilitando a paralelizacéao.
O mecanismo de Atengdo, mecanismo central dos Transformers funciona associando uma query (@) e um

conjunto de pares chave-valor (K,V) a uma saida.

A saida é calculada como uma soma ponderada dos valores (V'), onde o peso atribuido a cada valor é
determinado por uma fungéo de compatibilidade entre a query e sua respectiva key (K). A implementacao do
Produto Escalar Escalonado no Mecanismo de Atencéo aditiva otimiza a multiplicacdo de matrizes, o calculo

matricial para Atencdo é expresso como:

. QKT

Attention(Q, K, V') = softmax 14 (2.1)
Vi,

Q, K e V sao matrizes onde cada linha representa um vetor da respectiva sequéncia, a partir disso a softmax

transforma o vetor resultante do produto escalar em uma distribuicdo de probabilidades, onde cada elemento

recebe um valor entre 0 e 1 de modo que a soma seja igual a 1, K7 representa a transposta de K que calcula

a compatibilidade entre ) e K. Essa normalizagao enfatiza os elementos mais relevantes e atenua os menos

importantes.

O termo 1/+4/dj, é um fator de escalonamento, onde dj representa o tamanho dos vetores de key.
Esse ajuste é muito importante, porque quando dj € alto, os produtos escalares tendem a aumentar muito,

fazendo com que a funcéo softmax va para dreas com gradientes muito baixos, dificultando o aprendizado.
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Com essa abordagem, a estrutura consegue conectar diferentes posi¢oes, tornando mais facil entender as

relagoes globais.

A Atengdo Multi-Cabecas é uma extensdo do mecanismo de Atencdo e permite que o modelo foque em
diferentes relagoes da sequéncia de forma simultanea, cada cabega aplica uma proje¢ao linear independente aos
vetores ), KeV e realiza a atencdo separadamente, esta extensao permite que o modelo capture padroes em
diferentes subespacos. Isso permite que o modelo capte informacoes de diferentes partes de forma simultanea,

melhorando ainda mais a habilidade de representar informacoes de forma global.

2.1 Classificagoes de imagem

A utilizacdo de Convolutional Neural Networks [11] (CNNs) foi até a proposta dos Vision Trans-
formers [12] (ViTs) o estado da arte relacionado a classificagdo de imagens [13]. Por mais que a arquitetura
obtivesse resultados satisfatorios continuava sendo dependente de suas convolugbes para capturar padroes
nas imagens. Apesar dos avangos a sua limitacdo de captura a padroes locais, dependendo de configuragoes

de filtros e camadas impulsionou o desenvolvimento dos Vision Transformers [14].

Entretanto ainda existem cenarios onde as CNNs podem performar melhor que os ViTs como, por
exemplo, quando h& restricdo de dados, hardware ou foco em padrdes locais. Por sua aplicagdo ter menos
limitagGes vemos que mesmo com alguns contrapontos ela continua sendo empregada em diversos cendrios [15;
16].

2.1.1 Classificacdo com Vision Transformer

O Vision Transformer adapta a arquitetura Transformer, originalmente desenvolvida para processa-
mento de linguagem natural, para tarefas de visdo computacional, os ViTs utilizam o mecanismo de Atencao

para modelar relagoes globais entre diferentes regides da imagem [12; 14].

Inicialmente, uma imagem de dimensao H x W x C' é dividida em N blocos quadrados de tamanho
P x P, de modo que N = I?QV Cada bloco z; € RP*P*C ¢ linearmente projetado em um vetor de dimensio
fixa d por meio de uma camada de embedding:

2 = E(ZL‘Z) S Rd, (2.2)

onde E(-) representa a projecao linear aprendida. Para incorporar informagoes espaciais, cada bloco

embedding recebe um vetor de posigao p;, gerando o embedding final do bloco:

Zi = zi + pi- (2.3)

A sequéncia de embeddings {Z1, Z2,...,2Zn} é entdo processada por um Transformer Encoder, com-
posto por camadas de Atengdo Multi-Cabecas, normalizagao e redes feed-forward, cada camada feed-forward
consiste em uma rede neural totalmente conectada aplicada a cada bloco de forma individual, refinando suas
representacoes e extraindo caracteristicas nao-lineares. O mecanismo de Atencdo permite que cada bloco

interaja com todos os outros blocos da imagem, capturando dependéncias de longo alcance e relagoes globais:

Attention(Q, K, V) = softma <QKT) V. (2.4)
ntion(/, 11, = sortmax ) :
Vdy,
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onde @, K e V sdo as matrizes de consulta, chave e valor derivadas dos embeddings dos blocos, e dj

é a dimensao das chaves.

A matriz de consulta @ contém representagées que perguntam por informacéo relevante em outros
blocos, na matriz chave K temos as representacoes que sao comparadas com as consultas onde a matriz de

valor V' armazena as informagdes que serdo combinadas de acordo com os pesos calculados.

Para realizar a classificagdo, a sequéncia de blocos recebe um token especial [CLS], cuja saida apds o
encoder representa um resumo da imagem inteira. Este vetor é passado por uma camada totalmente conectada

para gerar as probabilidades das classes:

y = softmax(Weis Zeis + bels), (2.5)

onde zg5 é o embedding do token [CLS] apds o encoder e Weig, beis 80 0s parametros da camada de

classificacio.

Essa abordagem permite que os ViTs capturem relagoes globais de forma eficiente, superando limi-
tagoes das CNNs em datasets grandes, ao modelar padrdes complexos de maneira mais flexivel.
2.1.2 Swin Transformer for Fine-Grained Recognition

A Figura 1 [17] ilustra a arquitetura SwinFG, na qual se efetua a integragio de Mapas de Atengao
locais dentro de uma estrutura global pensando em resolver problemas de Classificagdo Visual Fina de Espécies

(FGVC) ou problemas similares, isto é, tarefas de distingdo entre categorias préximas ou parecidas.
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Figura 1 — Esquema da arquitetura do SwinFG.

Com fundamentacao nos Mapas de Atencdo gerados em distintas janelas do Swin Transformer,
o modelo executa uma fusdo iterativa, preservando a rastreabilidade da evolugdo dos pesos ao longo das

camadas.
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A metodologia é construida unindo Mapas de Atenc¢ao locais em uma matriz de afinidade global. Essa
tabela é criada usando transformacoes repetitivas que aplicam multiplicagdo de matrizes de forma continua,
um aspecto importante que garante o valor de cada parte da imagem. Isso aumenta a diferencga entre as areas

relevantes e o fundo, evitando que dados desnecessarios possam prejudicar a acurdcia do modelo.

O mecanismo de janelas deslocadas do Swin Transformer, também representado na Figura 1, res-
tringe a operacao de Autoatencdo a regioes menores sem perder a capacidade de capturar relagoes de longo
alcance, este mecanismo organiza a entrada em janelas de blocos, estas janelas sdo deslocadas entre camadas

permitindo que as informagbes da imagem se misturem gradualmente.

2.2 Classificagoes tabulares

A aplicacao de tarefas de classificagao em dados tabulares é documentada em diversos contextos, um
dos primeiros modelos que foi empregado nesse tipo de tarefa foi a Multi-Layer Perceptron (MLP), treinadas
com retropropagacao [8; 18]. Essas redes conseguem entender padrdes complexos a partir de grupos de dados.
A aplicagdo tem maior aplicabilidade quando existem relagdes entre diferentes varidveis que ndo seguem uma

linha reta, permitindo aproximar fungoes complexas.

Por sua facil interpretabilidade e adaptagdo uma alternativa as redes neurais sdo algoritmos com
base nas arvores de decisao. O ID3 por exemplo, cria arvores de decisao utilizando medidas de entropia para
escolher os atributos mais importantes de cada né [19]. Com base nessa ideia, apareceram os métodos, como
o Random Forest que junta varias arvores de decisdo que funcionam sozinhas para diminuir a varidncia e

melhorar a precisdo do modelo [20].

Outro progresso significativo na classificacdo de dados tabulares é o boosting, que cria modelos
ligeiramente melhores, denominados modelos fracos um apds o outro, como arvores simples, para melhorar os
erros dos modelos que vieram antes. Isso leva a um modelo mais forte e confidvel [21]. Métodos de boosting,
como o Gradient Boosting Machine, se tornaram muito populares porque conseguem trabalhar bem com
dados de tabelas que sao variados e complicados, muitas vezes se saindo melhor do que redes neurais e

arvores isoladas em termos de robustez e acuracia.

Assim, a literatura [22; 23] mostra que, mesmo com o progresso das redes neurais, técnicas tradi-
cionais que usam arvores e conjuntos ainda sdo consideradas importantes para classificar dados em tabelas,

principalmente quando se precisa de interpretacao, solidez e bom desempenho em conjuntos de dados variados.

2.2.1 TabTransformer

A modelagem de dados tabulares representa a forma de dados mais comum em aplicagoes reais [23],
historicamente o estado da arte para dados tabulares tem sido dominado por métodos de conjunto baseados
em arvores, como as Arvores de Decisdo com Boosting de Gradiente (GBDT, do inglés Gradient Boosting
Decision Trees - GBDT). Em contraste, modelos baseados em Aprendizado Profundo dominam as dreas de

imagem e texto.

Modelos cléssicos de Aprendizado Profundo, como o Multi-Layer Perceptron, utilizam embeddings
paramétricos para representacdo de caracteristicas categdricas aprendidas durante o treinamento, mas sofrem
de limitagGes significativas, incluindo a falta de interpretabilidade e baixa robustez contra dados sem com-
pletude ou ruidosos. Mais importante, os MLPs geralmente nao conseguem igualar a precisao de previsao dos

modelos baseados em arvores, como o GBDT, na maioria dos conjuntos de dados.
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A proposta da arquitetura do TabTransformer [24] é abordar as limitagoes do MLP e fechar a
lacuna de desempenho em relacdo ao GBDT através da Autoatencdo que antes era aplicada ao dominio
de Processamento de Linguagem Natural. Camadas Transformer baseadas em Autoatengdo transformam
os embeddings paramétricos de caracteristicas categoéricas em embeddings contextuais, sendo composto por
trés componentes principais: i) Uma camada de Embedding de Coluna; ii) Uma pilha de N camadas de

Transformer; iii) Uma MLP posicionada no topo da arquitetura, responsével pela etapa final de predigao.

Embedding de Coluna e Identificador Unico

Cada caracteristica categorica x; é embutida em um embedding paramétrico de dimensao d, denotado
por ey, (z;) € R%. Para dados tabulares, o método de embedding de coluna é tinico e inclui um identificador
tnico (c,,) para distinguir as classes em uma coluna daquelas em outras colunas. O embedding para um valor

x; = j é definido pela concatenacéo:
etpi (.7) = [Ctpmwtpij] (26)
onde ¢, € R! é o identificador tinico da coluna, e Wy, € R4 ¢ o embedding especifico do valor da caracte-

ristica. Diferentemente do Transformer original, o TabTransformer nao utiliza codificagdes posicionais, pois

os dados tabulares nao possuem ordenacao intrinseca das caracteristicas.

Camadas de Transformer e Contextualizagao

Os embeddings paramétricos FEy(Tcqr) = {€y, (1), .., €4, (Tm)} sdo alimentadas nas camadas de
Transformer, representadas por uma funcao fy. Através da agregacao sucessiva de contexto de outros embed-

dings, cada embedding paramétrico é transformado em um embedding contextual h;, de modo que:
{hi,o s} = fol{ep, (21), .. ep,, (2m)}) (2.7)

Uma camada de Transformer consiste em uma camada de Atengdo Multi-Cabecas seguida por uma

camada position-wise feed-forward, com adi¢do por elemento e normalizacdo de camada apds cada subcamada.

O mecanismo de Autoatengdo calcula o quanto cada embedding de entrada atende aos outros em-
beddings, transformando-o em uma representagao contextual. A Atencdo é calculada pela matriz A € R™*™,

definida como:

KT
Attention(K,Q,V) =A-V, onde A = softmax (Q ) (2.8)
vk
Onde m é o nimero de embeddings de entrada (caracteristicas categéricas) e k é a dimensao dos vetores chave
e consulta.
Os embeddings contextuais {hi,...,h,} sdo concatenados com as caracteristicas continuas x.on:

para formar um vetor de dimenséo (d x m+¢), que é entéo introduzido em um MLP superior g, para prever

o alvo y.

O treinamento do TabTransformer é realizado de forma end-to-end, minimizando a funcao de perda
L(z,y) aprendendo simultaneamente os pardmetros ¢ (para embedding de coluna), 6 (para camadas Trans-

former) e ¢ (para o MLP superior):

L((E,y) = H(gw(fG(Eap(xcat))axcont)ay) (29)
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Os embeddings contextuais aprendidos pelo TabTransformer sdo altamente robustos contra dados
ruidosos e ausentes, superando o MLP basal nesses cenérios. Essa robustez é atribuida a propriedade contex-
tual dos embeddings, onde uma caracteristica ruidosa pode extrair informagcoes das caracteristicas contextuais

corretas, permitindo um grau de correcgao.

O TabTransformer demonstrou superar significativamente o estado da arte em Aprendizado Supervi-
sionado, método que aprende a partir de dados ja rotulados corretamente, além disso, se destaca especialmente

quando a quantidade de dados nédo rotulados é grande, igualando seu desempenho com modelos GBDT [24].

2.3 Classificagoes multimodais

A informac¢@o no mundo real é inerentemente multimodal, provindo de multiplos canais de entrada,
como imagens associadas a legendas, ou sinais visuais e auditivos em videos. A integracio de multiplas midias,
suas caracteristicas ou decisbes intermediarias para a realizacdo de uma tarefa de analise é referida como fusao

multimodal.

A fusdo de multiplas modalidades pode fornecer informagoes complementares e aumentar a precisao
do processo de tomada de decisdo geral. Contudo, as diferentes modalidades possuem caracteristicas distintas,
incluindo formatos e taxas de captura variadas, o que impoe desafios & sincronizagdao e & modelagem das

correlagdes [25].

Niveis e Estratégias de Fusao Classicas

As estratégias de fusao sdo tradicionalmente classificadas em dois niveis: fusdo em nivel de caracte-

ristica, ou fusdo precoce e fusdo em nivel de decisdo, ou fusdo tardia [26].

Na fusdo em nivel de caracteristica, as caracteristicas extraidas das modalidades de entrada sao
combinadas em uma unica representagdo antes de serem enviadas a uma unica unidade de andlise, ou seja
é single-branch. Este método produz uma verdadeira representagdo multimidia, pois as caracteristicas sao
integradas desde o inicio, e exige apenas uma fase de aprendizado. A dificuldade estd em combinar caracte-
risticas em uma representacdo comum pois a sincronizacdo temporal entre as caracteristicas multimodais é

complexa de representar.

A fusdo em nivel de decisdo junta escolhas locais feitas com base em caracteristicas especificas. Essas
escolhas, por estarem em um nivel de significado, normalmente tém a mesma forma, o que torna a fusdo mais
facil e permite a combinagdao mais flexivel de miltiplas decisoes. Além disso, a fuséo tardia dé a liberdade de
utilizar métodos mais apropriados para analisar cada modalidade de forma separada, aplicacdo multi-branch.
O principal desafio é que isso exige um esforgo maior de aprendizado, ja que cada modalidade precisa de uma

fase de Aprendizado Supervisionado diferente, além de uma etapa final para combinar tudo.

A fusdo tardia tende a fornecer um desempenho ligeiramente melhor para a maioria dos concei-
tos analisados, quando a fusdo precoce é mais eficaz, as melhorias de desempenho sdo notavelmente mais

significativas [26].

Aprendizado Multimodal com Modelos Generativos Profundos

Apesar da utilidade das estratégias de fusdo nos niveis de caracteristica e decisdo, a modelagem

de dados multimodais, onde as modalidades possuem propriedades estatisticas muito distintas, apresenta
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desafios significativos para modelos rasos.

Modelos convencionais discriminativos ndo conseguem lidar muito bem com a falta de certos tipos de
entrada ou usar enormes quantidades de dados nao rotulados. Uma boa representacao que envolve multiplas
modalidades deve servir tanto para tarefas que diferenciam quanto para aquelas que buscam informagao, mas
também precisa ser simples de conseguir mesmo quando alguns tipos estdao faltando, permitindo que dados

que estao ausentes sejam preenchidos.

A Méquina de Boltzmann Profunda (DBM do termo em inglés para Deep Boltzmann Machine) [27]
é um modelo gréafico nao direcionado que aprende uma densidade de probabilidade conjunta sobre o espago de
entradas multimodais. A DBM alcanca a fusdo aprendendo uma representacgao unificada a partir dos estados

de variaveis latentes.

O modelo é formado juntando DBMs que sao feitas para diferentes tipos, colocando uma camada
oculta bindria extra em cima para unir essas modalidades. Os trajetos de cada tipo podem ser treinados

antes, sem supervisao, aproveitando muitos dados que nao tém roétulos.

A representacdo que combina diferentes entradas é obtida a partir da camada oculta central da rede.
Essa combinacao é considerada a mais 1til, pois elimina as dependéncias especificas de cada tipo de dado

quando avanga na rede [27].

Uma caracteristica importante do DBM Multimodal é que ele consegue gerar novos dados. Isso
significa que ele pode criar informagoes para modalidades que estao faltando, como produzir texto a partir

de uma imagem ou encontrar imagens usando uma descrigao em palavras.

2.3.1 Classificacdo com Transformer Multimodal

O esquema de pré-treinamento e ajuste fino (pre-train-and-fine-tune) foi expandido para o dominio
conjunto de visdo e linguagem, dando origem a categoria de modelos Vision-and-Language Pre-training
(VLP). Esses modelos sdo pré-treinados em pares de imagem e texto alinhados, utilizando objetivos como
casamento de imagem e texto (image text matching) e modelagem de linguagem mascarada (masked language

modeling), e sdo subsequentemente ajustados para tarefas multimodais downstream.

Historicamente, as abordagens VLP dependiam fortemente de processos de extracao de caracte-
risticas visuais, que geralmente envolviam a supervisdo de regido e arquiteturas convolucionais profundas.
Tais métodos criavam gargalos de eficiéncia, pois a extragdo de caracteristicas visuais exigia muito mais

computagdo do que as etapas subsequentes de interagado multimodal.

A nova geracao de arquiteturas multimodais baseadas em Transformer busca superar essas limitagoes,
introduzindo caminhos de processamento visual mais leves e unificados, para as quais se identificam técnicas

single-branch e dual-branch aplicadas a diferentes dominios.

Vision-and-Language Transformer

O Vision-and-Language Transformer [28] (VILT) é uma arquitetura VLP minima e monolitica, ao
implementar um esquema simples de wisual embedding, utilizando projecdo linear em blocos de imagem,
método introduzido pelo Vision Transformer, simplifica as entradas tratando-as de maneira unificada e sem
convolucao, em vez de extrair caracteristicas visuais por meio de convolugdes como em modelos VLLP baseados

em regides, o ViLT transforma diretamente blocos da imagem em embeddings através de uma projecao linear.
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Essa abordagem faz com que esta arquitetura seja mais rapida que VLPs baseados em caracteristicas de regido.

Sendo uma arquitetura de fluxo tinico onde a maior parte da computacio é concentrada na mode-
lagem das interacoes modais e embora tenha sido originalmente projetado e pré-treinado para tarefas como
Visual Question Answering e recuperagao, sua arquitetura permite a adaptacao direta para classificagdo su-
pervisionada de pares imagem-texto. O modelo utiliza a representacdo agrupada, da sequéncia multimodal

final para alimentar uma cabega downstream para predicao de classes.

Contrastive Language-Image Pre-training

O Contrastive Language-Image Pre-training [29] (CLIP) representa uma abordagem distinta, focada
no aprendizado de representagoes visuais transferiveis a partir da supervisdo em linguagem natural. Ele foi
pré-treinado em um vasto conjunto de 400 milhoes de pares de imagem e texto com um objetivo contrastivo

simples de prever qual legenda corresponde a qual imagem.

O modelo consiste em dois codificadores separados e igualmente dispendiosos que mapeiam as entra-
das para um espaco de embedding multimodal, onde a similaridade de cosseno entre pares correspondentes
é maximizada. Diferentemente do ViLT, a interagdo entre as modalidades no CLIP é rasa, limitada a um

produto escalar entre os vetores de embedding extraidos.

Esta caracteristica é crucial para a classificacdo supervisionada, o CLIP nao foi treinado para clas-
sificacao direta. No entanto, seus embeddings podem ser aproveitados em modelos downstream para tarefas
supervisionadas. A principal aplicacao para classificacdo é a transferéncia zero-shot, o codificador de texto
é reutilizado para sintetizar um classificador linear (zero-shot classifier) ao codificar os nomes ou descri¢oes
das classes, e a predicdo ¢é feita pelo calculo da similaridade de cosseno entre o embedding da imagem e os

embeddings das classes textuais.

Perceiver

O Perceiver [30] é um framework de representation learning projetado para a percepgio geral, capaz
de processar simultaneamente entradas de alta dimensao de multiplas modalidades sem depender de pressu-
postos arquitetonicos especificos de dominio, ou seja, ndo depende de convolugbes, recorréncias ou estruturas

especificas de dados, ao utilizar atencéo e projecoes lineares ele processa qualquer tipo de entrada.

Para enfrentar a grande quantidade de informacoes de entrada, o Perceiver usa um sistema de Atencao
assimétrica que ajuda a transformar essas informagoes em um espaco menor e fixo. Essa transformacao é feita
por meio de um médulo de Atengdo cruzada que converte o conjunto de dados de entrada em um conjunto

menor.

A arquitetura entdo processa o latent array através de uma pilha profunda de blocos Transformer
Autoatengao. Essa estrutura permite a fusdo de informagao em todos os niveis, ja que o modelo pode itera-

tivamente extrair informacoes relevantes da entrada através de multiplos médulos de Atencéo cruzada.

Embora o Perceiver tenha sido desenvolvido como um framework genérico, e nao seja intrinsecamente
um classificador direto, ele pode ser aplicado a tarefas downstream de classificacdo supervisionada. A saida
do Perceiver é tipicamente obtida pela média do médulo final de Autoatencio latente sobre a dimensao de
indice, produzindo um vetor de resumo global que é entao projetado para o niimero de classes alvo por uma

camada linear.
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2.4 Cabecgas de classificagao

Cabecas de classificacido sdo camadas finais de um modelo pré-treinado que sdo adicionadas para
tarefas especificas conhecidas como downstream tasks. O modelo base aprende as representacoes a partir do
pré-treinamento e a Cabeca de classificacao converte as representacdes em previsoes ou categorias especificas,

as Cabecas permitem que o mesmo backbone seja reutilizado em multiplos cendrios.

2.4.1 k-Nearest Neighbors

O classificador k-Nearest Neighbors [31] (k-NN) é reconhecido como um procedimento de decisdo nao
paramétrico, o que significa que ele opera independentemente de quaisquer pressupostos sobre as estatisticas
subjacentes da distribuicdo conjunta. Este método atribui a um ponto de amostra que se deseja classifi-
car, denominado x, a mesma classificacdo do ponto mais préximo encontrado em um conjunto de amostras

previamente classificadas.

Para que o procedimento seja executado, é fornecido um conjunto de n pares corretamente classifi-
cados: (x1,01), (X2,62),...,(Xn,0,). As observacoes x; representam as medigoes de um individuo e tomam
valores em um espaco métrico X, no qual estd definida uma métrica d. As varidveis 6; representam a categoria

a qual o i-ésimo individuo pertence, tomando valores no conjunto {1,2,..., M}.

O objetivo é estimar a categoria # de uma nova observagdo x utilizando a informagéo contida no
conjunto de pontos classificados. O ntcleo do algoritmo reside na identificacdo do vizinho mais préximo, x7,
em relagdo a x, o vizinho mais préximo é definido como o ponto x} que minimiza a distancia d(x;,x) para

todos 0s ¢ no conjunto de n amostras.

Uma vez identificado o vizinho mais préximo x;, a regra do Vizinho Mais Préximo toma a decisdo de
classificar x na categoria 6; correspondente a esse vizinho. Este é o procedimento de decisdo ndo paramétrico
mais simples desta forma, pois a classificacdo de x depende exclusivamente da classificagdo de seu vizinho

mais préximo, ignorando as classificacoes dos n — 1 pontos restantes.

A abordagem simples reside na suposicao heuristica de que observagoes que estdo préximas terdo
a mesma classificagdo, ou pelo menos terdao distribuicoes de probabilidade posteriores quase idénticas em

relacdo as suas respectivas classificacoes.

A eficicia desta regra é notavel, pois, mesmo na andlise de grandes amostras, a probabilidade de erro
R da regra NN é limitada superiormente por duas vezes a probabilidade de erro de Bayes R*. A probabilidade
de erro de Bayes (R*) é o minimo possivel sobre todas as regras de decisdo, servindo como uma referéncia
para a exceléncia que nao pode ser superada. No sentido de que R é no méaximo o dobro de R*, metade da

informacéao de classificacdo em um conjunto infinito de amostras esta contida no vizinho mais préximo.

Uma extensao deste conceito é a regra do k-Vizinho Mais Préximo (k-NN), que atribui ao ponto
nao classificado a classe mais representada entre seus k vizinhos mais proximos. No entanto, o procedimento
de Vizinho Mais Préximo Unico (1-NN) foi mostrado ser admissivel entre a classe das regras k-NN para o
problema de n amostras, sugerindo que, em certas distribuicoes, ele é estritamente melhor, pois possui uma

probabilidade de erro mais baixa.

No exemplo ilustrado na Figura 2 [32], o k-NN classifica um novo ponto, representado pelo quadrado

preto, com base nas classes predominantes entre seus k vizinhos mais préximos.
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Um exemplo a ser classificado
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Figura 2 — Demonstracdo da classificagdo de um novo ponto com diferentes valores de K.

2.4.2 Random Forest

O Random Forest [20] é um classificador que consiste numa cole¢do de preditores estruturados em
arvores, conforme ilustrado na Figura 3 [33]. Para que este classificador funcione, cada drvore que compoe a
floresta depende dos valores de um vetor aleatério, ®, amostrado de forma independente e com a mesma

distribuicao para todas as arvores.

O elemento comum em procedimentos de ensemble, método que combina multiplos modelos para
melhorar o desempenho utilizando aleatoriedade, utiliza para a k-ésima &arvore, um vetor aleatério @y é
gerado, independentemente dos vetores aleatérios passados, mas com a mesma distribuicdo. Uma arvore é
entdo desenvolvida utilizando o conjunto de treinamento e @y, resultando em um classificador h(x, ®y), onde

x é o vetor de entrada. Apds um grande niimero de arvores ser gerado, elas votam para a classe mais popular.

Formalmente, uma Random Forest é definida como um classificador que consiste numa cole¢do de
classificadores estruturados em arvores {h(x, @),k =1,...}, onde os {O} sdo vetores aleatdrios indepen-
dentes e identicamente distribuidos, e cada arvore lanca um voto unitario para a classe mais popular na
entrada x. Uma vez que o nimero de arvores no forest aumenta, o erro de generalizagdo converge quase

certamente para um limite, o que significa que o overfitting ndo é um problema.

A precisdo do Random Forest depende fundamentalmente de dois fatores: a forca dos classificadores
de arvores individuais na floresta e a correlagdo entre eles. A forga (s) é medida pelo valor esperado da fungéo
de margem m,(X,Y), que quantifica a extensdo em que o nimero médio de votos para a classe correta (V)
excede o voto médio para qualquer outra classe. A correlagdo média (p) é a correlacdo entre as funcoes de

margem bruta de pares de arvores.

Um limite superior para o erro de generalizagao (PE*) de um Random Forest pode ser expresso em
termos destas duas variaveis: PE* < p(1 — s%)/s% . Isto implica que, para um bom desempenho, o algoritmo
deve injetar aleatoriedade para minimizar a correlagdo (p), a0 mesmo tempo em que mantém a forga (s) dos

classificadores individuais.
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O método proposto no trabalho original [20] alcanga isso usando a sele¢io aleatdria de caracteristicas
para determinar a divisdo em cada nd da arvore. A forma mais simples é selecionar aleatoriamente, em cada
nd, um pequeno grupo de varidveis de entrada para realizar a divisdo, as arvores sao desenvolvidas até o

tamanho maximo e nao sao podadas.

A utilizagdo da técnica de bagging que consiste em gerar multiplos conjuntos de treinamento por
amostragem com reposicdo e combinar os resultados dos modelos treinados, em conjunto com a selecao
aleatéria de caracteristicas, é frequentemente empregada, onde novos conjuntos de treinamento (bootstraps)
sao gerados com reposicao a partir do conjunto original. Os resultados empiricos mostram que a injegao de

aleatoriedade tem como objetivo uma baixa correlagdo p enquanto mantém uma forca razoavel.
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Figura 3 — Classificacdo de uma instancia através de varias arvores de decisdo independentes.

2.4.3 Support Vector Machine

A Support Vector Machine [34] (SVM), anteriormente denominada Support-Vector Network (SVN)
é uma maquina de aprendizado desenvolvida inicialmente para problemas de classificagdo binaria. O conceito
fundamental que a SVN implementa é que os vetores de entrada sao transformados de maneira nao linear para
um espaco de caracteristicas de dimensdo muito alta, Z, onde é construida uma superficie de decisao linear.
As propriedades dessa superficie de decisao garantem uma alta capacidade de generalizacao da maquina de

aprendizado.

O principal desafio tedrico é encontrar um hiperplano que consiga separar bem os dados, mesmo
quando estao em espacos com muitas caracteristicas. A resposta para esse problema é a ideia de um hiperplano
6timo. O hiperplano 6timo é definido como a funcao de decisao linear que possui a margem maxima entre os
vetores de treinamento das duas classes. A margem é a distdncia entre a superficie de decisdo e os pontos de

dados mais préximos de cada classe, que sdo chamados de vetores de suporte.

A grande capacidade de generalizacdo da SVN decorre de uma limitagéo tedrica: se os vetores de
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treinamento forem separados sem erros por um hiperplano étimo como visto na Figura 4 [35], a probabilidade
esperada de erro em um exemplo de teste é limitada superiormente pela razado entre o valor esperado do

nimero de vetores de suporte e o niimero de vetores de treinamento.

A limitacao nao depende da dimensionalidade do espago de separacao, permitindo que o algoritmo
generalize bem mesmo em espacos de caracteristicas que podem atingir bilhoes de dimensoes. Para o caso
separédvel sem erros, o hiperplano 6timo (definido por wq -z + by = 0) é aquele que minimiza w - w sujeito as

restricoes de separacao. O vetor de pesos wg é uma combinacao linear dos vetores de suporte z;.
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Figura 4 — Representacao do hiperplano 6timo e das margens em um classificador SVM, destacando os vetores
de suporte das classes A e B.

Para estender a aplicagdo da SVN a dados de treinamento nao separaveis ou com erros, foi introduzido
o conceito de margem suave. A margem suave permite erros e desvios (§; > 0) nos dados de treinamento, e o
problema de otimizacao passa a ser a minimizag¢ado de uma funcao que equilibra a maximizacdo da margem

e a penalizacao dos erros.

O parametro C' no funcional de minimizac¢ao permite controlar o trade-off entre a complexidade da
regra de decisdo, ou seja, a funcdo que determina a classificagdo de novos exemplos, e a frequéncia de erro,

sendo essencial para o controle da capacidade de generalizacao da maquina de aprendizado.

O método do Kernel resolve o problema técnico de trabalhar com espacos de caracteristicas de
dimensdo extremamente alta de forma computacionalmente eficiente. A funcao de classificacio f(x) de um
vetor de entrada x depende apenas dos produtos escalares entre o vetor de entrada transformado ¢(x) e os

vetores de suporte transformados ¢(x;).

Em vez de realizar explicitamente essa transformacao de alta dimensdo, o produto escalar ¢(u)-¢(v) é

substituido por uma fun¢do Kernel K (u, v), calculada diretamente no espago de entrada de menor dimenséo.

Ao variar a fungdo Kernel, a SVN se torna uma méaquina de aprendizado universal, capaz de imple-
mentar diferentes redes de aprendizado, como classificadores polinomiais de grau arbitrario ou maquinas de

Fungao de Base Radial (RBF). O processo de otimizacao da SVN é um problema de programagao quadrética
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que é resolvido de forma eficiente, determinando a matriz D;; = y;y,; K(x;,X;).

Na matriz, y; e y; representam os rétulos das amostras ¢ e j, enquanto K (x;,x;) mede a similaridade
entre essas amostras no espaco definido pelo kernel. Assim, D;; combina informacdo sobre as classes e a
semelhanca entre os dados, ao servir como termo quadratico permitindo que a SVN encontre a margem

maxima entre as classes.

2.4.4 Logistic Regression

A Logistic Regression [36] é uma metodologia estatistica desenhada para analisar situagdes onde as
observagoes, representadas por Y;, tomam apenas dois valores, tipicamente denotados como 0 e 1. O objetivo
é modelar a dependéncia da probabilidade de um resultado ser 1, denotada 6; = pr(Y; = 1), em fungdo de

uma ou mais varidveis independentes, X;.

A formulagao padrao reconhece que uma relacao linear direta entre a probabilidade 0; e a varidvel
independente X; é inadequada, exceto em intervalos estreitos, visto que #; deve necessariamente permanecer
restrita ao intervalo. Portanto, a forma mais adequada e matematicamente tratavel para representar essa

relagdo ¢ a lei logistica:

logit 6; = log{laie} =a+ X,

Nesta formulagao, logit 6; é a transformacao logaritmica da razao de chances, e a relacao linear é

estabelecida entre o logit da probabilidade e a variavel independente X;.

O parametro 8 é o coeficiente de regressao, que mede a inclinacdo dessa dependéncia. O objetivo
primario é fazer inferéncia sobre 3, tratando o como um pardmetro de perturbagdo. A interpretacao de 5 é
que, se 6; for pequena, § representa o aumento fracionario em 6; por unidade de aumento em X;; se 1 — 6,

for pequeno, (3 representa a diminuicao fracionaria em 1 — #; por unidade de aumento em X;.

O processo de classificacdo e inferéncia muitas vezes se concentra na distribuicdo do estatistico
suficiente conjunto para os pardmetros « e 8, que sdo Y = ) Y; (o niimero total de 1’s) e X = > Y, Xj.
Para fazer inferéncia sobre 8 separadamente, a andlise é feita condicionalmente no valor observado de Y (o

nimero total de 1’s), eliminando assim o pardmetro de perturbagao c.

Em casos mais complexos como na Figura 5 [37], com multiplas varidveis independentes, a lei logistica
é generalizada de forma natural. Para testes de hipdteses nulas auséncia de regressdo, f = 0, os testes
desenvolvidos s@o ndo paramétricos, pois a lei logistica auxilia apenas na derivacao do critério de teste, mas

nao na distribuicao amostral sob a hipétese nula.

Para fins de estimacao, especialmente em amostras grandes, o método de maxima verossimilhanca ou
o método de minimo logit x? sdo as abordagens recomendadas, resultando em calculos de regressio multipla,

que podem ser iterativos ou nao iterativos, respectivamente.
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Figura 5 — Exemplos de classificagdo por regressdo logistica em diferentes cendrios: unidimensional, linear,
nao linear e multiclasse.

2.4.5 XGBoost

O XGBoost [38] (eXtreme Gradient Boosting) é um sistema escaldvel de reforgo de drvores que se
destaca como um método altamente eficaz e amplamente utilizado em aprendizado de maquina, demonstrado
na Figura 6 [39]. Ele se baseia nos algoritmos de reforgo de gradiente de &rvores, técnica que constréi um
modelo preditivo em uma maneira aditiva. O modelo final de ensemble de arvores utiliza K fungdes aditivas

para prever o resultado, sendo que a previsdo final é a soma das pontuacoes de cada arvore.

O destaque do XGBoost é a sua fungdo objetivo regularizada. Para um dado conjunto de dados com

n exemplos, o modelo de ensemble de drvores busca minimizar a seguinte funcéo objetivo regularizadas:
L(¢) = Zl@myi) + ZQ(fk)
i k

onde [ é uma funcao de perda convexa e diferencidvel que mede a diferenga entre a previsdo g; e o alvo
y;- O termo Q(f) é o termo de regularizacdo, que penaliza a complexidade do modelo. Essa regularizagao
adicional, Q(fx) = 7T + $A|w||?, onde T ¢é o nimero de folhas da arvore fi, w o vetor de pesos das folhas
da arvore e A o hiperparametro que controla a penalizagao, ajuda a suavizar os pesos finais aprendidos para
evitar o overfitting. Quando o termo de regularizacao é zerado, o objetivo retorna ao método tradicional de

gradient tree boosting.

O modelo é treinado de forma aditiva, o que significa que, em cada iteragdo t, uma nova funcdo de
(t

[ P o _ . - L a(t—1 .
arvore (f;) é adicionada para otimizar o objetivo, dada a previsdo do passo anterior g, ). Para otimizar
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rapidamente o objetivo em um cendrio geral, o XGBoost utiliza uma aproximacdo de segunda ordem da
fungdo de perda. Apds remover os termos constantes, o objetivo simplificado em cada passo ¢t depende apenas

dos estatisticos de gradiente de primeira ordem (g;) e de segunda ordem (h;) da funcio de perda.

Para uma estrutura de arvore ¢(x) fixa, a equagédo simplificada permite calcular o peso 6timo w; de
cada folha j, bem como uma pontuagio de qualidade da estrutura da arvore Lgp;¢. Essa pontuagdo atua como
uma métrica de impureza similar a usada em arvores de decisdo, mas é derivada para uma gama mais ampla
de fungoes objetivo. Um algoritmo guloso é usado para encontrar a melhor divisdo na arvore, que maximiza

a reducdo de perda dada por Lpit.
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Figura 6 — Esquema grafico do modelo XGBoost.

2.5 Trabalhos correlatos

Os trabalhos relacionados dispostos a seguir foram utilizados como embasamento para o presente

estudo. Cada subsegdo aborda contribuigoes aplicadas a conjuntos de dados distintos.

2.5.1 Cross-View Contrastive Masked Autoencoders for Bird Species Classification and Map-
ping

O Cross-View Contrastive Masked Autoencoders for Bird Species Classification and Mapping [40]
(BirdSAT), é um framework de Aprendizado Auto-Supervisionado que representa um avango no campo da
FGVC e no mapeamento ecologico. O modelo propde aprender um espaco de representacdo unificado que
é util para ambas as tarefas, sendo particularmente relevante por enriquecer o espago de embedding com
metadados disponiveis nas imagens de passaros ao nivel do solo. A inclusdo de metadados demonstrou ser
muito eficaz para lidar com o desafio da classificacao de espécies, caracterizado pela baixa variacao interclasses

e alta variacao intraclasses.
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O BirdSAT foi pré-treinado em um novo dataset global chamado Cross-View iNAT 2021 Birds
Dataset, que é intrinsecamente multimodal e cross-view. Este dataset é composto por pares de imagens
de péassaros ao nivel do solo, imagens de satélite correspondentes e metadados de aquisicdo. As imagens
de satélite fornecem ao modelo o contexto do ambiente e do habitat onde o péssaro pode ser encontrado,
ilustrado na Figura 7 [40] exemplos de pares de imagens de satélite e de nivel do solo de aves, juntamente

com os metadados associados a cada par.

Lat: -21.93073 Lat: 44,02901 Lat: 40.77782 Lat: 48.93169 Lat: 32.72578

Lon: 114,12239 Lon: -73.17711 Lon: -124,57932 Lon: -111.94939 Lon: -116.94503

Date: 2087-10-31 Date: 2011-87-15 Date: 2008-09-20 Date: 2012-91-02 Date: 2012-03-27
White-plumed Honeyeater Black-billed Cuckoo Black-footed Albatross American Wigeon White-tailed Kite

Figura 7 — Exemplo de dados do Cross-View iNAT-2021 Birds.

Os metadados de aquisicao, cruciais para o BirdSAT, fornecem pistas adicionais que podem melhorar

a interpretacao e reduzir o nimero de classes possiveis, sendo utilizados os atributos de localizacao e tempo.

Os atributos numéricos foram codificados usando o método senoidal-cossenoidal e, em seguida, passa-
dos para uma camada feed-forward que gera um embedding adicionado ao embedding do [cls] token resultante
dos encoders, antes da classificacdo. O uso da geolocalizacdo e dados como detalhes adicionais que o modelo
pode entender vem de estudos passados que mostram que adicionar informagoes sobre localizagdo ajuda a
performance na tarefa de FGVC.

O framework utiliza a arquitetura ViT para o pré-treinamento cross-view. Para alcangar um espago
de embedding comum para as tarefas de FGVC e mapeamento de espécies, o BirdSAT unifica as estratégias
SSL de Contrastive Learning (CL) e Masked Image Modeling (MIM).

Duas abordagens arquiteturais foram propostas para a fusao das modalidades e metadados: o Cross-
View Embed MAE (CVE-MAE), que é uma configuracao uni-modal de fusdo tardia que usa encoders transfor-
madores separados para cada modalidade, e o Cross-View Metric MAE (CVM-MAE), que é uma configuragiao
cross-modal de fusdo precoce que emprega um unico encoder transformador multimodal e decoders separados

por modalidade.

As arquiteturas estdo dispostas na Figura 8 [40] onde foi avaliado: (a) um pré-treinamento unimodal
(fusdo tardia) e (b) um pré-treinamento multimodal (fusdo inicial) do ViT, incorporando metadados e objeti-
vos de reconstrucado mascarada e contraste. Os modelos que incorporam metadados alcancaram desempenho

estado da arte na classificacdo fina de passaros no iNAT-2021 Birds.
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Figura 8 — Frameworks propostos.

2.5.2 Visual WetlandBirds Dataset

O trabalho Visual WetlandBirds Dataset [6] foca na criagdo e disponibilizagdo do primeiro dataset
de video de granularidade fina especificamente para a detec¢do de comportamento e classificacdo de espécies

de passaros em videos.

Devido a crise mundial de desaparecimento de espécies e ao alto preco do acompanhamento de
animais, é muito importante criar sistemas autométicos que possam fornecer informacgoes certas para a
protecdo dessas espécies. O escopo principal deste estudo é preencher uma lacuna notavel na escassez de
datasets de video de passaros com anotacdes detalhadas de comportamento, com exemplos mostrados na
Figura 9 [6].

Alerta
Comendo
Voando
Limpeza
Descango

Madanda

Andando

Legenda

Figura 9 — Recortes de quadros de video de espécies de passaros realizando os sete comportamentos que
compoem o conjunto de dados.
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O dataset é composto por 178 videos gravados em péantanos espanhéis na regido de Alicante, cap-
turando 13 espécies diferentes e 7 classes de comportamento distintas. O que torna o Visual WetlandBirds
especial é que ele da informagoes sobre o tempo e o lugar em que os passaros aparecem, no nivel do quadro.
Ele mostra qual é a espécie, onde o passaro esta e o que ele estd fazendo a cada instante, indo além de apenas
confirmar que a espécie estd ali. Para a tarefa de classificacdo de espécies, o trabalho utilizou o YOLOv9
como baseline, e para a detecgdo de comportamento foram avaliados modelos baseados em Transformer e

redes convolucionais.

Apesar de ser o primeiro a fornecer anotagoes de comportamento, espécie e localizagdo no nivel do
quadro para aves em video, o Visual WetlandBirds enfrenta limitagoes significativas, principalmente rela-
cionadas a sua escala e metodologia de anotacdo, um desafio primario é a quantidade limitada de dados

disponivel para o treinamento de modelos complexos de aprendizado profundo.

O dataset totaliza apenas 178 videos, com uma duracgao total de aproximadamente 58 minutos e 53
segundos. Essa restricdo de volume de dados é um fator que demonstra a necessidade de mais recursos para

a captura de informagdes adicionais.

Outra limitacao importante é o desequilibrio de classes de comportamento. O total de videos feitos
sobre comportamentos nao ¢é igual para todos, acdes como voar e se limpar tém a menor quantidade de videos,

porque acontecem menos vezes ou sao complicadas de registrar com cameras que ficam paradas.

O processo de anotagdo semi-automéatica impds critérios que simplificam a complexidade do com-
portamento animal. Primeiramente, quando um péassaro realiza multiplas atividades simultaneamente, o
protocolo de anotagao estipula que apenas um unico comportamento pode ser atribuido por quadro. Nesses
casos, o comportamento considerado ecologicamente mais relevante, como alimentar-se, é priorizado sobre

comportamentos locomotores concomitantes, como andar ou nadar.

Para que um conjunto de movimentos seja classificado como um comportamento distinto, ele deve ter
uma duragdao minima de 30 quadros. Movimentos mais curtos sao rotulados como sub-movimentos do compor-
tamento principal, o que facilita a segmentacao e classificacdo pelos modelos, mas simplifica o comportamento

real.

2.5.3 A Multi-Path Feature Fusion and Spectral-Temporal Attention-Based Model for Bird
Audio Classification

Lu et al. [41] propdem a Dual-path spectro-temporal Attention & Fusion Network (DuSAFNet)
para capturar simultaneamente texturas espectrais locais e dependéncias temporais de longo alcance nos

espectrogramas de entrada log Mel.

O modelo comega com um backbone compartilhado e é seguido pelo Médulo de Atencao Espectro-
Temporal (STA). O STA recalibra adaptativamente a importancia de cada banda de frequéncia e segmento de
tempo, modelando pesos de Atencao separadamente nos eixos de frequéncia e tempo. Essa separagdo permite
que a rede se concentre nas bandas e periodos mais discriminativos, superando as dificuldades das CNNs

tradicionais em capturar informagoes de frequéncia absoluta e relagoes temporais de longo alcance.

O cerne da extracao de recursos é o Médulo de Extracdao de Recursos de Caminho Duplo (DPFM), que
opera em paralelo. A GrowthBranch utiliza unidades de crescimento densamente conectadas para capturar

texturas locais de grao fino, que sdo sensiveis a variagoes de frequéncia de curto prazo.



43

Em contraste, a SkipBranch emprega uma estrutura de salto residual para refinar o contexto de longo
alcance, fortalecendo a capacidade do modelo de capturar padroes temporais e cruzados de frequéncia, a fusao
adaptativa dos recursos destas duas ramificacoes é realizada pelo Mapeamento de Fusdo Controlada (GFM),
um mecanismo de gating leve que ajusta dinamicamente a propor¢do do fluxo de informacoes, suprimindo

recursos redundantes e realgando informacoes criticas para aumentar a eficiéncia da fusédo.

Apés a fusdo inicial, é utilizado o Mdédulo de Fusdo Temporal e Espacial, que tem duas partes: a
LocalSpanAttention, que analisa as relacoes de tempo em uma area, e o MultiscaleAttentionModule, que
ajusta as informagoes em diferentes escalas espaciais e de canais. O objetivo é melhorar a maneira como os
dados sao representados, tanto em relagao as ligacoes temporais locais quanto ao ajuste em diferentes escalas

no espaco e nos canais.

Para aumentar a diferenga entre espécies que sdo um pouco diferentes, o DuSAFNet traz um Classi-
ficador ArcMarginProduct Multi-banda. O ArcMarginProduct é aplicado a cada banda com fatores de escala

(s) e margens angulares (m) distintos para aumentar explicitamente a distdncia angular entre as classes.

A fusao final dos logits de cada banda é feita usando pesos aprendiveis, o que permite ao modelo equi-
librar automaticamente a importancia de cada faixa de frequéncia durante o treinamento, toda arquitetura

é observada na Figura 10 [41].
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Figura 10 — Arquitetura geral do DuSAFNet.
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3 METODO DE PESQUISA

Os métodos adotados foram definidos com o objetivo de alcangar uma classificagio multimodal das es-
pécies selecionadas por estado, buscando avaliar o desempenho dos modelos a partir de métricas consolidadas
na literatura. A abordagem apresenta carater quantitativo e experimental, envolvendo a coleta sistematica
dos dados, seu pré-processamento e a avaliacdo do desempenho das diferentes arquiteturas propostas. A

Figura 11 ilustra de forma geral os processos aplicados.

Preparacgao
dos dados
in%:"r:qs:l?egio SN Coleta dos dados SN Pré- RN Divisao de treino
CB‘I%O no WikiAves H processamento e teste

Treinamento dos
classificadores Fase de avaliagdo

Treinamento dos
extratores

SwinFG

/9 Concatenagao —) Classificador % Avaliagdo

TabTransformer

Figura 11 — Fluxo dos processos aplicados.

3.1 Conjunto de dados

A fim de obter a lista de aves do Brasil, foi consultado o website do Comité Brasileiro de Registros
Ornitoldgicos, este que, em sua 132 edigdo, publicada em 2021, havia 1950 nomes populares validos, com
correspondéncia no WikiAves, onde era possivel consultar as fotos e seus metadados correspondentes. A
escolha dos nomes populares foi devida a mudanca de nome de alguns taxons, estes que eram descritos de

outra maneira no WikiAves.

A mediana de imagens correspondente para estas espécies validas foi de 696 e a média, 2700. A
mediana foi adotada como niimero maximo de imagens que deveriam ser obtidas para cada espécie, assim

mitigando desbalanceamento entre a quantidade de imagens de cada classe.

Como algumas espécies tinham uma quantidade muito pequena de registros, a analise considerou
espécies que tinham mais de 100 fotos, assim ndo obtendo aquelas que poderiam ser interpretadas como ruido
pelo modelo. Dessa forma, obtivemos espécies com mais de 100 e até 696 registros. A quantidade final de

espécies a serem obtidas foi de 1590.
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Além disso, pela presenca de um nimero muito grande de espécies por estado, a quantidade de
espécies a ser utilizada foi limitada as cinco com maior ocorréncia. Essa medida foi necessaria para evitar

grande desbalanceamento em um problema de classificagdo multiclasse.

A partir da quantidade final de espécies definidas no escopo, houve a coleta das imagens corres-
pondentes a cada uma delas, juntamente com os seguintes metadados: id, autor, data, localizagdo, enderego
eletrdnico original e o id da espécie. Estes dados serviram, respectivamente, para o treinamento do SwinFG

e do TabTransformer.

3.2 Pré-processamento

Utilizando Python, todos os dados foram separados em suas respectivas pastas, contendo as imagens
de cada individuo e um arquivo JavaScript Object Notation (JSON), formato de arquivo para armazena-
mento de dados estruturados. Também foi gerado um novo arquivo JSON que contém todos os metadados

estruturados, a fim de facilitar o acesso.

Em busca de arquivos corrompidos, a etapa identificou quaisquer arquivos cujo tamanho era de 0

kilobytes, ou seja, que estavam corrompidos.

3.3 Divisao dos dados

Todos os dados, sejam eles imagens ou dados tabulares, foram divididos na proporg¢ao de 70% para
treino e 30% para teste nos modelos utilizados para a extracao. Todos os dados foram estratificados, a fim

de mitigar o desbalanceamento nas amostras.

J4 nos modelos utilizados para classificacao a divisao foi de 60% para treino, 20% para validagao e

20% para teste.

3.4 Modelagem

A abordagem aplicada foi downstream, a aplicagdo dual-branch resultou em uma abordagem onde
duas arquiteturas foram responsaveis pelo pré-treinamento extraindo as caracteristicas e cinco efetuando o
treinamento, teste e validacdo final da classificagdo. No branch das imagens o SwinFG foi aplicado devido a
sua natureza voltada para tarefas de FGVC que possibilita a extracdo do vetor de caracteristicas do modelo
de imagem, para os dados tabulares (metadados), o TabTransformer foi empregado, obtendo por vez os

embeddings relacionados as informagoes geo-temporais e outros atributos.

Nos modelos empregados para o pré-treinamento, os hiperparametros de suas respectivas implemen-

tacOes originais foram mantidos, a fim de contornar limitagdes de tempo e recursos computacionais.

Apbs o processo inicial de pré-treino e classificacdo das modalidades de forma individual, houve a
concatenagao dos vetores responsaveis pelas caracteristicas tabulares e as de imagem. Diferentes modelos
foram avaliados como Cabegas de classificacao, incluindo k-NN, Random Forest, Support Vector Machine,
Logistic Regression e XGBoost, esses modelos receberam os embeddings das modalidades individuais e por

fim, os embeddings concatenados.
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3.5 Validacao e avaliagao

Na fase de treino e teste dos modelos extratores, foram utilizados 5 folds estratificados, de maneira

a obter os beneficios da utilizacao do k-fold e, a0 mesmo tempo, ndo aumentar o tempo de treinamento.

Os mesmos dados utilizados no treinamento e teste dos dados tabulares também foram utilizados no
treinamento do modelo responsavel pelas imagens. Isto é, cada um, em sua forma, seja tabular ou em formato
de imagem, foi separado por um identificador correspondente, tornando possivel a concatenacao do vetor de
caracteristicas ao fim do processo, a métrica escolhida para avaliacdo foi a acuracia, por medir a proporgao
de classificacoes corretas sobre o total de exemplos, tendo uma avaliacao direta e interpretavel, representada
como:

Acuricia = Neorretas
total

onde Neorretas € 0 nimero de previsoes corretas do modelo e Nigta ¢ 0 nimero total de exemplos avaliados.
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4 EXPERIMENTOS

Esta secao apresenta os experimentos realizados para avaliar o desempenho da abordagem proposta,
as segoes seguem a ordem de realizagdo das etapas do experimento buscando evidenciar diferencas entre os

métodos aplicados ao problema.

4.1 Cenarios de avaliagao

Os experimentos foram realizados em trés diferentes cenarios, sendo o primeiro deles baseado na
utilizacdo de metadados. Nesse conjunto estdao englobadas informagoes como localizagdo, data da observagao,
atributos taxondmicos (reino, filo, classe, ordem e familia), atributos temporais derivados (ano, més e dia),
além de identificadores de espécie e nome popular para classificacdo. Um exemplo de conjunto de atributos

utilizados na classificacdo pode ser visto na Figura 121!.

Foi empregado o TabTransformer para extrair o vetor de caracteristicas dos metadados, cuja saida
foi posteriormente processada por diferentes classificadores de arquiteturas distintas, de modo a evidenciar

possiveis vantagens ou desvantagens de cada um nesta aplicagao.

No segundo cenario o SwinFG serviu como extrator do vetor de caracteristicas das respectivas ima-
gens associadas aos metadados, a sua saida passou de forma individual pelos mesmos classificadores listados

no texto.

\/Z

{
"bicudinho-do-brejo™: {

"taxonomia”: {
"reino": "Animalia”,
"filo": "Chordata",
"classe": "Aves",
"ordem”: "Thamnophilida”,
"familia"; ""

}

"registro”:
"data": "16/04/2018",
"localizacao”; "Itapoa/SC"

/ l ‘ :
‘ M m [...]

Figura 12 — Exemplo de amostra.

J& no terceiro cendrio o vetor de caracteristicas de ambos os modelos foram concatenados e passaram
pelos exatos mesmos classificadores, isto €, buscando possiveis diferencas presentes nos resultados ao utilizar
os dois vetores juntos, podendo extrair ou ndo informacoes relevantes para a classificacdo. A Figura 12 ilustra
exemplos de entrada onde a fotografia da espécie serve de entrada para o SwinFG e os dados tabulares para

o TabTransformer.

L https://www.wikiaves.com.br/2965931
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O treinamento de ambos seguiu a mesma configuragdo, com batch size reduzido, gradient accumula-
tion, otimizador Adam, CrossEntropyLoss, early stopping e 5-fold cross-validation. A Tabela 1 demonstra as
modificagoes realizadas nos hiperparametros onde as motivacoes foram respectivamente: manter simplicidade,
evitar overfitting, controle temporal, melhor convergéncia e por fim melhor performance e maior robustez ao

overfitting; os demais valores nao listados foram mantidos em seus valores padrao.

Classificador Principais Alteragoes Configurado Default

k-NN Nenhuma n_ neighbors=>5 n_ neighbors=5
RandomPForest max_ depth=10 Profundidade limitada | Sem limite
SVM max__iter=1000 Iteragdes limitadas Ilimitado
LogisticRegression | max_ iter=1000 Mais iteragoes max_ iter=100
XGBoost n__estimators=50, max_ depth=4, learning rate=0.1 | Conservador Agressivo

Tabela 1 — Configuragbes dos classificadores testados.

4.2 Protocolo de execucao

A partir das métricas vistas em na Subsegao 3.5 os valores de acuracia representam a porgao de teste,

os dados foram organizados a partir do k-fold estratificado de 5 parti¢des, reduzindo o risco de overfitting.

Todo processo sequencial foi realizado com seed calculada a partir do hash da sigla de seu estado
correspondente e normalizada para 32 bits, garantindo que reproducao deterministica das modalidades du-
rante o tempo de execucdo, a partir da aplicacao dos folds nos modelos utilizados no pré-treinamento ambos
receberam as mesmas amostras na mesma ordem, tornando possivel a concatenacdo final dos vetores de

caracteristicas.

Os dados utilizados para o treinamento dos modelos de classificagdo foram aplicados com uma divisdo
de dados de 60% para treino, 20% para validagao e 20% para teste, a partir da quantidade maior de reparti¢oes

foi possivel uma avaliagdo mais consistente da generalizacao dos modelos.
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5 RESULTADOS

A Figura 13 apresenta a distribuigdo de registros por estado considerando a soma de todas as espécies,
onde a coluna “Total” indica o nimero geral de amostras obtidas, a coluna “Com Imagem” representa aquelas
para as quais foram possiveis obter e processar ao menos uma imagem, e a coluna “Filtrados” corresponde
as amostras que possuem um nome popular vilido e uma imagem processavel. Para este trabalho, foram

utilizados os dados categorizados como “Filtrados”.

Registros por Estado (Total, Com Imagem, Filtrados)

mm Total
s Com Imagem
120000 | s Filtrados
100000 {
% 80000 -
(=]
&
@
o=
€ 60000
E
3
=
40000 1
20000 4

FSPEFTLLFTIFRPERLGFTEEREOFIRF Ry
Estados

Figura 13 — Registros por estado.

A Figura 15 contém a distribuicdo de espécies validas por estado. Sdo Paulo, Minas Gerais e Mato
Grosso concentram a maior quantidade de registros, enquanto estados como Alagoas, Piaui e Sergipe possuem
valores menores, essa variagdo mostra tanto o trabalho feito na coleta de amostras quanto a presenca de
pessoas que observam em certas dreas, afetando diretamente o equilibrio dos dados. Dessa forma, foram
aplicados filtros, selecionando apenas as espécies mais representativas em cada estado, conforme descrito na

Secdo 3, o comportamento das distribui¢ées pode ser visto na Figura 14.
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Distribuicdo de Espécies - Todos os Estados (28 secdes)

Figura 14 — Distribuicao das espécies por estado, de maior a menor ocorréncia.

Com base nos dados apresentados nas Figuras 11 e 15, a analise selecionou as cinco espécies com
maior ocorréncia em cada estado, devido a elevada diversidade de classes no conjunto de dados. Essa escolha
visa mitigar problemas decorrentes do grande ntimero de amostras, resultando em um conjunto de dados

mais balanceado para os experimentos realizados.

Numero de Espécies Validas por Estado

652

600

564

500 -

400 +

300 4

Numero de Espécies

200

100 -

FSLERLLIIFRPOITLOTEFRLOFTIRSFRW R

Figura 15 — Nimero de espécies validas por estado.

A Tabela 9, disponibilizada nos Apéndices devido a sua extensdo, demonstra as espécies a serem
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classificadas e suas respectivas quantidades para cada estado.

Na Tabela 2, os classificadores que utilizaram apenas a imagem, obtiveram resultados muito seme-
lhantes nos diversos estados da regiao, indicando que os atributos visuais extraidos nao foram suficientes para
uma classificagdo de maior acuracia, em cendarios onde a concatenagao foi realizada observamos uma piora
nos resultados, exceto no estado de Santa Catarina. Os resultados tabulares apresentam um comportamento

consistente.

O desempenho relativamente baixo do modelo que utilizou as caracteristicas extraidas da imagem

sugere que as informagoes obtidas ndo carregam atributos discriminantes que melhorem a classificacdo.

Tabela 2 — Acuracia de Teste por Estado - Regido Sul

Estado | Tabular | Imagem | Concatenado
PR 0.9118 0.3162 0.9044
RS 0.7223 0.3308 0.7132
SC 1.0000 0.3728 1.0000
Meédia | 0.8780 0.3399 0.8725

A regido demonstrada na Tabela 3 apresenta que diferentemente da regido vista na Tabela 2 houve
um modelo que performou uma acuracia inferior a 0,70. Outro aspecto importante é que, nesta regido a

concatenagdo obteve o mesmo resultado ou apresentou ganhos.

Além da média dos resultados serem superiores a da tabela da regido Sul, as informagdes extraidas do
modelo de imagem do Sudeste foram discriminantes o suficiente para obter melhoras em termos de acuracia
ao realizar a concatenacdo, isto é, as informacoes obtidas tiveram caracteristicas discriminativas que néao
estavam presentes apenas no embedding extraido do modelo tabular, essa caracteristica pode estar associada

ao numero diferente de amostras em cada regiao.

Tabela 3 — Acuracia de Teste por Estado - Regido Sudeste

Estado | Tabular | Imagem | Concatenado
ES 0.8462 0.4487 0.8897
MG 1.0000 0.3260 1.0000
RJ 0.6346 0.3107 0.6761
SP 0.9121 0.3919 0.9121
Meédia | 0.8482 0.3693 0.8695

No Norte representado pela Tabela 4, h4 uma variacdo maior entre os estados, indicando possivel
diferenca na distribuicdo ou na qualidade dos dados. O modelo concatenado apresentou ganhos sutis em
alguns estados, o modelo de imagem nesta regido de forma isolada continua demonstrando dificuldade para

extrair informacoes relevantes perante a complexidade visual das amostras.
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Tabela 4 — Acuréacia de Teste por Estado - Regiao Norte

Estado | Tabular | Imagem | Concatenado
AC 0.6465 0.2323 0.6364
AM 0.7140 0.3706 0.6937
AP 0.6692 0.3154 0.6923
PA 0.8300 0.3374 0.8645
RO 0.8365 0.2644 0.8173
RR 0.8080 0.2834 0.8173
TO 1.0000 0.3397 1.0000

Média | 0.7863 0.3062 0.7888

O Nordeste, presente na Tabela 5 por sua vez manteve o mesmo padrao observado em outras regioes,
no estado do Piaui que figurava dentre os de maior acuracia, ao realizar a concatenacdo apresentou um
resultado de menor acuracia quando comparado ao modelo que utilizou apenas os dados tabulares. Em trés
estados a acurdcia atingiu o valor méaximo, sugerindo que os atributos tabulares capturaram os padrées

necessarios para que a classificagdo performasse de forma 6tima no cendrio apresentado.

Tabela 5 — Acuracia de Teste por Estado - Regido Nordeste

Estado | Tabular | Imagem | Concatenado
AL 0.8605 0.3430 0.8663
BA 1.0000 0.3009 1.0000
CE 0.8893 0.3811 0.8955
MA 1.0000 0.3568 1.0000
PB 0.8050 0.3648 0.8050
PE 0.8333 0.3485 0.8428
PI 0.9114 0.3165 0.8861
RN 1.0000 0.4309 1.0000
SE 0.8421 0.4474 0.8421

Meédia | 0.9046 0.3655 0.9042

No Centro-Oeste retratado na Tabela 6 novamente ha tendéncia no melhor desempenho dos modelos
tabulares sobre os modelos de imagem, reforcando a dificuldade de aprendizado visual isolado diante dos

padroes apresentados.

Tabela 6 — Acuracia de Teste por Estado - Regiao Centro-Oeste

Estado | Tabular | Imagem | Concatenado
DF 0.9727 0.4044 0.9563
GO 0.8950 0.3591 0.9061
MS 0.8830 0.3333 0.8883
MT 0.8603 0.2615 0.8443
Meédia | 0.9028 0.3396 0.8988

Por outro lado, o exterior representado na Tabela 7 vemos que, a regiao foi a que mais apresentou
ganho na concatenacdo, isso demonstra que os dois embeddings de forma individual possuem caracteristicas
Unicas e que, quando concatenados, conseguem discriminar melhor as caracteristicas e obter um melhor

resultado.
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Tabela 7 — Acurécia de Teste por Estado - Regido Exterior

Estado | Tabular | Imagem | Concatenado
EX 0.6575 0.3950 0.7459
Média | 0.6575 0.3950 0.7459

Por fim, a Tabela 8 detalha os resultados gerais considerando todas regides abordadas, a mesma

ilustra a diferenga entre a acuracia das diferentes modalidades em diferentes métricas.

Tabela 8 — Estatisticas Descritivas por Modalidade - Todas as Regioes

Modalidade | Média | Mediana | Desvio Padrao | Minimo | Méaximo
Tabular 0.8550 0.8604 0.1159 0.6346 1.0000
Imagem 0.3458 0.3414 0.0533 0.2323 0.4487

Concatenado | 0.8606 0.8762 0.1087 0.6364 1.0000

As Figuras 16 e 17 demonstram, de forma visual, a diferenga entre os melhores resultados obtidos
em cada modalidade em todas areas e a diferenca entre a acuricia ao realizar as concatenagoes. Na Figura 16
indica que, sdo poucos os modelos classificadores que receberam apenas a imagem e que conseguem ultrapassar
o limiar de 0,4 no grafico.

Comparacio de Acurdcias por Modalidade

Tabular
Imagem
Concatenado
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Acuracia
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Figura 16 — Melhores acuracias obtidas nas regides analisadas.

Na Figura 17 os valores indicam que a maioria dos modelos que receberam a concatenagao obtiveram

resultados iguais ou melhores, ocorrendo em ambas modalidades.
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Figura 17 — Comparativo entre os ganhos obtidos através da concatenagao.

O resultado das acuracias detalhadas por modelo podem ser visualizado na Tabela 10 presente nos
Apéndices, por conter grande quantidade de informacoes a mesma foi movida para manter a continuidade do

texto.

A Figura 18 ilustra a relagdo entre volume amostral e o desempenho da classificacio por moda-
lidades, temos independéncia notavel entre essas varidveis, correlacdes despreziveis para dados tabulares e

concatenados e correlagao fraca para imagens.

A modalidade de imagem mesmo tendo acurdcias consistentemente inferiores ainda continua a apre-
sentar um comportamento que ndo depende da quantidade de dados. Isso mostra que hé limites naturais nas
imagens e ndo no nimero de exemplos. O Acre, sendo um caso diferente na forma combinada, destaca que

certas caracteristicas da regido tém mais impacto no resultado do que o ntimero de amostras.
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Figura 18 — Analise hibrida da relagdo entre tamanho de dataset e desempenho de classificagio por modali-
dade.
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A Figura 19 apresenta dois comparativos que relacionam métricas de distribuicdo de espécies por
estado com a acuricia do classificador por imagem. No painel esquerdo, o indice de Shannon de diver-
sidade/igualdade é realizado contra a acurdcia, valores baixos indicam ambientes onde a distribui¢do de
abundéancias é muito desigual, ja valores altos representam abundancias mais uniformes, a relacdo negativa
mostra que locais com mais variedade e distribuicdo mais uniforme costumam ter resultados menores no

modelo de imagens.

No painel direito, o indice de dominancia, isto é, quando poucas espécies predominam mostra corre-
lacao positiva com a acurécia, sinalizando que algumas relagoes tém resultados melhores quando ha poucas

espécies envolvidas.

As relagoes sugerem que a composi¢ao da comunidade influencia fortemente o desempenho do clas-
sificador. Quando h& uma ou poucas espécies que sao mais comuns, o modelo consegue identificar padroes de
maneira mais clara. Por outro lado, quando a comunidade tem mais variedade e estd mais equilibrada, fica

mais complicado realizar essa tarefa.

Relacdo entre Diversidade de Espécies e Performance de Classificacao por Imagem
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Figura 19 — Relacdo entre amostras e acuracia dos classificadores por modalidade.

A distribuicdo de gaps entre algoritmos por modalidade estd disposta na Figura 20, apresentando
diferencas na robustez a selecdo dos algoritmos entre os trés dominios do problema. A modalidade tabular
fica proxima a zero, a escolha do algoritmo de classificacdo exerce impacto minimo no desempenho final,
83,6% dos gaps estao abaixo de 5%, sugerindo que os algoritmos apresentam desempenhos similares quando

aplicados aos dados tabulares.

O dominio de imagem demonstra uma distribuigao mais dispersa e com formato indicativo de alta
variabilidade. Em 35% dos casos os gaps foram superiores a 15%, alcancando valores de até 37,3%, a escolha

do modelo é um fator determinante para o resultado.

Na modalidade onde os dados foram concatenados tem um comportamento intermediario, a distri-
buig¢do é concentrada similar ao visto nos dados tabulares mas com a presenga de alguns outliers. Tendo

82,2% gaps abaixo de 5% a abordagem é relativamente robusta & escolha do algoritmo, obtendo beneficio da
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concatenacgao dos dados. A integracdo indica que a concatenacao dos dados mitiga a sensibilidade & escolha

do algoritmo, oferecendo maior estabilidade preditiva.

Distribuicao de Todos os Gaps por Modalidade
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Figura 20 — Distribuicao de gaps de desempenho entre algoritmos por modalidade de dados.

A distribuicdo dos melhores classificadores por modalidade demonstra que para cada dominio do
problema apresentado uma modalidade de classificador se mostra mais especializada, conforme demonstrado

na Figura 21.

O k-Nearest Neighbors em 32,1% dos estados acaba por performar melhor em dados tabulares, isto
é, a eficicia da similaridade local tende a funcionar melhor, o XGBoost apresenta melhor desempenho em
35,7% dos dados de imagem, indicando que métodos mais robustos tendem a funcionar melhor ao tentar

capturar complexidades visuais presentes nos embeddings.

Na modalidade concatenada existe uma distribui¢ao equilibrada entre LogisticRegression, Random
Forest e XGBoost, a fusdo multimodal criou um espago de caracteristicas hibrido exploravel por diferentes
paradigmas, algo que nao ocorria antes, cada tipo de representacdo possui caracteristicas distintivas que

favorecem estratégias classificatérias especificas.
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6 CONCLUSAO

A utilizagao de dados de ciéncia aberta embora tenha possibilitado o estudo apresentou disparidade
na distribuicdo dos dados por estado, tal fen6meno pode ser ligado & ocorréncia desses préprios avistamentos
por entusiastas, isto é, por mais que a ciéncia cidada fornega mais amostras os experimentos ligados a ela
ainda sdo dependentes da distribuicdo geografica dos contribuintes. A distribuicdo das espécies indica que
a maior quantidade de individuos estd concentrada no primeiro e tltimo quartil, especialmente no tltimo,
indicando que poucas espécies dominam as ocorréncias enquanto muitas sdo incomuns, a delimitacao de

escopo é dependente do dominio do problema.

Com relagao a performance de cada arquitetura, a quantidade de amostras ndo apresentou alta
correlagdo com a acurdcia obtida. A diferenca de performance foi mais atribuida a escolha da arquitetura,
principalmente no cenario onde apenas as imagens foram utilizadas como entrada, no cendrio onde utiliza-
mos apenas os dados tabulares ou a concatenagao das modalidades obtivemos resultados muito préximos,

indicando que a escolha do modelo nao tem grande peso nos resultados na otica da métrica escolhida.

Os modelos classificadores atingiram no cenario de teste uma média de acurdcia de 0,8550 para
tabular, 0,3458 para imagem e 0,8606 para concatenado, a modalidade tabular por si s6 demonstrou ser uma
escolha vidvel para contornar um problema de Classificagdo Visual Fina que apresentou ser mais dificil de
resolver no dominio das imagens, a partir dos resultados de relagdo entre amostras e acurdcia, os modelos

tendem a acertar a classe majoritdria inflando a acuracia geral.

A concatenagdo demonstra ganho de acurdcia na maioria dos cendrios em que foi aplicada, princi-

palmente no dominio de imagem, este que apresentou menor desempenho.

Por fim, a concatenacao dos dois embeddings nesse modelo downstream oferece a possibilidade de um
trade-off, por mais que a acurdcia ndo apresente ganhos significativamente grandes, a abertura de um novo
espacgo de caracteristicas hibrido combina a estabilidade do tabular com a expressividade das imagens, isso
garante menor sensibilidade a escolha do algoritmo e boa capacidade de representacdo. Essa caracteristica
abre possibilidades para um classificador com maior desempenho computacional e resultados préximos ao de

melhor performance.

Em geral, o presente trabalho apresentou uma abordagem para classificacao multimodal de passaros
em territério nacional, oferecendo uma baseline para o estudo da aplicagdo de diferentes arquiteturas no

cendrio de um problema downstream de Classificagao Visual Fina.

6.1 Trabalhos futuros

Os pontos aqui abordados podem ser utilizados para melhorar a acurédcia e o desempenho computa-
cional de classificadores utilizados no monitoramento de espécies ou em outras iniciativas de conservacao. Por
meio de arquiteturas baseadas em Transformer e de sua dindmica de concatenacao de embeddings, surge a
viabilidade de explorar dados de ciéncia cidada, aproveitando a distribuicao de pessoas préximas aos habitats

dessas espécies.

Considerando as limitagoes e resultados dispostos, é vidavel que trabalhos futuros explorem as espécies

presentes em outras areas da distribuicdo utilizando outras meétricas, verificando se o comportamento de
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relagdo das amostras e acuracia continua o mesmo na medida que diminuimos as amostras disponiveis para

o modelo, também fica aberta a possibilidade da aplicacdo de métodos de Hyperparameter tuning.

Outro ponto a ser investigado é a substituicdo das arquiteturas presentes nas branches. Principal-
mente a de imagem a fim de realizar comparagoes na extragdo de caracteristicas presentes nas imagem das

espécies dispostas.

Finalmente, a utilizacdo de um modelo monolitico single-branch é uma possibilidade a se explorar
visando obter maior explicabilidade dos resultados perante a extracdo das caracteristicas devido ao menor

nimero de arquiteturas envolvidas.
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Apéndices






Tabela 9 — Registros completos de espécies por estado apds filtragens.

Estado | Espécie Quantidade
AC agulha-de-garganta-branca 342
periquito-de-cabeca-suja 303
ariramba-castanha 292
ariramba-da-capoeira 274
anambé-de-cara-preta 271
AL saira-pintor 284
picapauzinho-de-pernambuco 190
papa-taoca-de-pernambuco 140
maria-de-barriga-branca 123
anumara 120
AM aracari-negro 639
galo-da-serra 605
capitao-de-bigode-carijé 595
papagaio-da-varzea 559
rabo-de-arame 953
AP uirapuru-vermelho 186
caboclinho-lindo 136
caraxué 115
formigueiro-de-cabeca-preta 107
irataud-grande 105
BA beija-flor-de-gravata-vermelha 696
arara-azul-de-lear 696
gravatazeiro 695
saira-pérola 650
anambé-de-asa-branca 601
CE soldadinho-do-araripe 696
cara-suja 596
vira-folha-cearense 417
maria-do-nordeste 366
jacucaca 364
DF capacetinho-do-oco-do-pau 312
maria-preta-do-nordeste 226
limpa-folha-do-brejo 183
pula-pula-de-sobrancelha 102
bacurau-de-rabo-maculado 89
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Tabela 9 — Registros completos de espécies por estado apds filtragens.

Estado | Espécie Quantidade
ES mutum-de-bico-vermelho 525
rabo-branco-mirim 500
tiriba-de-orelha-branca 354
chaud 334
furriel 236
EX pelicano 541
ganso-de-magalhaes 345
garga-moura-europeia 315
tesoura-do-campo 305
marreca-oveira 303
GO tiriba-do-parana 277
pato-corredor 182
cardeal-do-araguaia 170
papagaio-galego 139
vite-vite-de-cabeca-cinza 136
MA garca-tricolor 250
chupa-dente-de-capuz 211
rabo-branco-do-maranhao 200
aracua-de-sobrancelhas 174
araponga-do-nordeste 156
MG beija-flor-de-gravata-verde 696
pato-mergulhédo 645
andarilho 641
maxalalaga 612
rolinha-do-planalto 595
MS tiriba-fogo 696
rapazinho-do-chaco 679
periquito-de-cabecga-preta 569
arapagu-do-campo 441
jacutinga-de-garganta-azul 433
MT tiriba-do-madeira 519
cujubi 502
saira-de-cabega-azul 502
capitao-de-cinta 494
jacu-de-barriga-castanha 484




Tabela 9 — Registros completos de espécies por estado apds filtragens.

Estado | Espécie Quantidade
PA jacupiranga 579
tiriba-de-hellmayr 432
ararajuba 392
asa-de-sabre-de-cauda-escura 323
arapacu-de-listras-brancas-do-leste 304
PB saira-pintor 235
chororé-didi 178
papa-taoca-de-pernambuco 141
gaviao-gato-do-nordeste 122
maria-de-barriga-branca 116
PE atoba-de-pé-vermelho 668
grazina 540
juruviara-de-noronha 508
trinta-réis-preto 465
rabo-de-palha-de-bico-laranja 456
PI arapacu-do-nordeste 127
chupa-dente-de-capuz 81
canario-do-amazonas 75
caneleiro-enxofre 55
asa-de-telha-pélido 55
PR bicudinho-do-brejo 404
cisqueiro 339
arredio-olivaceo 206
tico-tico-de-costas-cinza 205
gralha-picaca 202
RJ formigueiro-de-cabega-negra 603
formigueiro-do-litoral 595
papa-moscas-estrela 381
vite-vite 374
saudade 332
RN chorozinho-de-papo-preto 268
picapauzinho-da-caatinga 197
joao-xique-xique 171
magarico-de-costas-brancas 148
caneleiro-enxofre 120
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Tabela 9 — Registros completos de espécies por estado apds filtragens.

Estado | Espécie Quantidade
RO gaturamo-de-bico-grosso 243
periquito-de-cabeca-suja 238
curica-de-bochecha-laranja 196
maria-da-praia 190
picapauzinho-dourado 169
RR periquito-de-bochecha-parda 448
joao-pinto-amarelo 444
choca-de-crista-preta 441
papa-capim-cinza 413
téu-téu-da-savana 389
RS joao-da-palha 678
caminheiro-de-unha-curta 664
caminheiro-de-espora 659
boininha 653
batuira-de-coleira-dupla 637
SC maria-catarinense 666
papagaio-charao 566
aracua-escamoso 472
flamingo-dos-andes 467
tapaculo-ferreirinho 442
SE chorozinho-de-papo-preto 66
jandaia-verdadeira 52
pipira-preta 24
papa-taoca-da-bahia 23
magarico-branco 21
SP bicudinho-do-brejo-paulista 696
topetinho-verde 569
papagaio-de-cara-roxa 543
maria-leque-do-sudeste 520
nao-pode-parar 514
TO pica-pau-da-taboca 354
pato-corredor 283
chororé6-de-goids 275
cardeal-do-araguaia 203
garca-da-mata 193

Tabela 10 — Acurécia de Teste - Todos os Classificadores (Todos os Estados)

Estado

Modalidade | k-NN | LogReg | RandomForest | SVM

XGBoost

AC

Tabular

0.5859 | 0.5926

0.5926

0.6465




Tabela 10
Estado | Modalidade | k-NN | LogReg | RandomForest | SVM | XGBoost
AC Imagem 0.2121 0.2323 0.2222 0.2222 0.2222
AC Concatenado | 0.6094 0.6364 0.6195 0.5724 0.6195
AL Tabular 0.8140 0.8605 0.8547 0.8605 0.8547
AL Imagem 0.2151 0.3430 0.2733 0.3372 0.2733
AL Concatenado | 0.7791 0.8663 0.8140 0.8663 0.8256
AM Tabular 0.6751 0.6193 0.7140 0.5888 0.6734
AM Imagem 0.2893 0.3316 0.3587 0.3249 0.3706
AM Concatenado | 0.6108 0.6650 0.6497 0.6328 0.6937
AP Tabular 0.6615 0.6692 0.6538 0.6615 0.6462
AP Imagem 0.2308 0.2308 0.2615 0.3154 0.2615
AP Concatenado | 0.6385 0.6154 0.6538 0.6692 0.6923
BA Tabular 1.0000 1.0000 1.0000 1.0000 1.0000
BA Imagem 0.2530 0.2754 0.2964 0.2799 0.3009
BA Concatenado | 1.0000 1.0000 1.0000 1.0000 1.0000
CE Tabular 0.8668 0.8893 0.8893 0.8730 0.8832
CE Imagem 0.2930 0.3811 0.3730 0.3607 0.3730
CE Concatenado | 0.8402 0.8873 0.8852 0.8770 0.8955
DF Tabular 0.9617 | 0.9727 0.9672 0.9454 0.9672
DF Imagem 0.3333 0.3880 0.3279 0.4044 0.3443
DF Concatenado | 0.9290 0.9563 0.9454 0.9399 0.9563
ES Tabular 0.8462 0.8154 0.8385 0.8282 0.8462
ES Imagem 0.3590 0.3513 0.4333 0.3590 0.4487
ES Concatenado | 0.8487 | 0.8564 0.8897 0.8590 0.8846
EX Tabular 0.6326 0.6547 0.6243 0.6575 0.6381
EX Imagem 0.2845 0.3757 0.3343 0.3950 0.3343
EX Concatenado | 0.7155 0.7459 0.6961 0.7403 0.6878
GO Tabular 0.8674 | 0.8729 0.8950 0.8508 0.8840
GO Imagem 0.2541 0.2873 0.3204 0.2983 0.3591
GO Concatenado | 0.8619 0.8840 0.9006 0.8453 0.9061
MA Tabular 1.0000 1.0000 1.0000 1.0000 1.0000
MA Imagem 0.2462 0.3568 0.2714 0.3417 0.3015
MA Concatenado | 0.9950 1.0000 1.0000 1.0000 1.0000
MG Tabular 1.0000 1.0000 1.0000 1.0000 0.9969
MG Imagem 0.2712 0.2680 0.3260 0.2853 0.3260
MG Concatenado | 0.9984 1.0000 1.0000 1.0000 0.9969
MS Tabular 0.8759 0.8741 0.8812 0.8652 0.8830
MS Imagem 0.2589 0.2748 0.3245 0.2287 0.3333
MS Concatenado | 0.8617 | 0.8723 0.8723 0.8652 0.8883

73



74

Tabela 10
Estado | Modalidade ‘ kE-NN ‘ LogReg | RandomForest ‘ SVM ‘ XGBoost
MT Tabular 0.8603 | 0.8463 0.8483 0.8044 0.8503
MT Imagem 0.2315 | 0.2255 0.2575 0.2116 0.2615
MT Concatenado | 0.8044 | 0.8383 0.8144 0.7964 0.8443
PA Tabular 0.8177 | 0.7857 0.8202 0.7882 0.8300
PA Imagem 0.2611 | 0.3251 0.3079 0.3374 0.2906
PA Concatenado | 0.8547 | 0.8645 0.8498 0.8547 0.8645
PB Tabular 0.8050 | 0.7862 0.7987 0.7925 0.7862
PB Imagem 0.3019 | 0.3522 0.3082 0.3648 0.3585
PB Concatenado | 0.7610 | 0.7736 0.7862 0.8050 0.8050
PE Tabular 0.8201 | 0.8068 0.8295 0.8239 0.8333
PE Imagem 0.2973 | 0.3371 0.3277 0.3295 0.3485
PE Concatenado | 0.8314 0.8314 0.8428 0.8239 0.8314
PI Tabular 0.8734 | 0.8481 0.9114 0.8481 0.8608
PI Imagem 0.3165 | 0.3165 0.2658 0.3038 0.2532
PI Concatenado | 0.6962 0.7975 0.8861 0.6329 0.8101
PR Tabular 0.8787 | 0.9118 0.9081 0.8787 0.9007
PR Imagem 0.2794 | 0.3162 0.3088 0.3162 0.2610
PR Concatenado | 0.8750 | 0.9044 0.8824 0.8787 0.8934
RJ Tabular 0.6083 | 0.5886 0.6346 0.5733 0.6258
RJ Imagem 0.2713 | 0.3042 0.2757 0.3020 0.3107
RJ Concatenado | 0.6433 | 0.6761 0.6455 0.6608 0.6652
RN Tabular 1.0000 | 1.0000 1.0000 1.0000 0.9945
RN Imagem 0.3370 | 0.4309 0.3757 0.4309 0.3923
RN Concatenado | 0.9834 1.0000 1.0000 1.0000 0.9945
RO Tabular 0.8077 | 0.7933 0.8173 0.7788 0.8365
RO Imagem 0.2212 | 0.1827 0.2644 0.1731 0.2163
RO Concatenado | 0.8173 | 0.8125 0.8125 0.8029 0.8125
RR Tabular 0.8056 | 0.8080 0.8080 0.8080 0.8080
RR Imagem 0.2553 | 0.2834 0.2810 0.2623 0.2717
RR Concatenado | 0.8080 | 0.8103 0.8173 0.8033 0.7963
RS Tabular 0.7102 | 0.6692 0.7223 0.5933 0.7086
RS Imagem 0.2792 | 0.3171 0.3232 0.3308 0.3247
RS Concatenado | 0.6449 | 0.7011 0.6904 0.6616 0.7132
SC Tabular 1.0000 | 1.0000 1.0000 1.0000 0.9981
SC Imagem 0.3098 | 0.3155 0.3690 0.3040 0.3728
SC Concatenado | 0.9943 | 1.0000 1.0000 1.0000 0.9981
SE Tabular | 0.7368 | 0.8421 0.8158 | 0.8158 | 0.7895




Tabela 10
Estado | Modalidade | k-NN | LogReg | RandomForest | SVM | XGBoost
SE Imagem 0.4211 0.4474 0.2895 0.4474 0.3421
SE Concatenado | 0.7368 0.8421 0.7105 0.7632 0.7632
SpP Tabular 0.8770 | 0.9104 0.9121 0.8787 0.9069
SP Imagem 0.3111 0.3919 0.3497 0.3620 0.3814
SP Concatenado | 0.8805 | 0.9121 0.8893 0.8840 0.8946
TO Tabular 1.0000 1.0000 1.0000 1.0000 0.9962
TO Imagem 0.3015 | 0.3206 0.3206 0.2481 0.3397
TO Concatenado | 1.0000 1.0000 1.0000 1.0000 0.9962
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