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SILVA, GIAN ROBERTO PEREIRA DA. Sintese de Séries Temporais utilizando
AutoEncoders para Geragao de Dados Sintéticos Realistas. 51 p. Trabalho de
Conclusao de Curso (Bacharelado em Ciéncia da Computacao) — Universidade Estadual
do Parana, Apucarana—PR, 2025.

RESUMO

A geragao de dados sintéticos de séries temporais é uma solucao crucial para mitigar a
escassez de dados em dominios como industria, finangas e satide. Este trabalho propoe e
valida uma metodologia baseada em Autoencoders (AE) para a sintese de dados realistas
e uteis. Focando em um conjunto de dados complexo de telemetria de propulsores de
espagonaves, que exibe caracteristicas ruidosas e em surto, a pesquisa demonstra uma
progressao metodologica. Inicialmente, um AutoEncoder Densa unicanal é avaliado como
baseline, demonstrando-se incapaz de capturar a dindmica temporal DTW de 14.22 e a
distribuicao estatistica Wasserstein de 0.2647 dos eventos, gerando apenas ruido. Esta
falha motiva a arquitetura proposta: um Autoencoder Convolucional 1D CNN multicanal,
que modela a relagao fisica de causa-e-efeito entre o comando de acionamento ton e a
resposta do propulsor thrust, mfr. A avaliacdo é realizada com um protocolo robusto
DTW, Distancia de Wasserstein, t-SNE e uma métrica de utilidade TSTR - Train-on-
Synthetic, Test-on-Real. Os resultados demonstram a superioridade da CNN, que reduziu
o erro de forma DTW para 7.30 e replicou a distribuicao de dados Wasserstein de 0.044.
Notavelmente, o TSTR atingiu um ratio de 0.0192, validando o AE como um filtro de
ruido eficaz e um gerador de dados de alta fidelidade.

Palavras-chave: Séries Temporais. AutoEncoders. Dados Sintéticos. Aprendizado de Ma-

quina. Aprendizado Profundo.






SILVA, GIAN ROBERTO PEREIRA DA. Time Series Synthesis using AutoEn-
coders for Realistic Synthetic Data Generation. 51 p. Final Project (Bachelor of

Science in Computer Science) — State University of Parand, Apucarana—PR, 2025.

ABSTRACT

The generation of synthetic time series data is a crucial solution to mitigate data scarcity
in domains such as industry, finance, and healthcare. This work proposes and validates
a methodology based on Autoencoders for the synthesis of realistic and useful data. Fo-
cusing on a complex spacecraft thruster telemetry dataset, characterized by noisy and
burst-like behaviors, the research demonstrates a methodological progression. Initially, a
single-channel Dense MLP AE is evaluated as a baseline, showing an inability to capture
temporal dynamics DTW of 14.22 and the statistical distribution Wasserstein of 0.2647 of
the events, producing only noise. This shortcoming motivates the proposed architecture:
a multi-channel 1D Convolutional Autoencoder CNN, which models the physical cause-
and-effect relationship between the actuation command ton and the thruster response
thrust, mfr. The evaluation follows a robust protocol DTW, Wasserstein Distance, t-
SNE and includes a utility metric TSTR — Train-on-Synthetic, Test-on-Real. The results
demonstrate the superiority of the CNN, which reduced the shape error DTW to 7.30
and replicated the data distribution Wasserstein of 0.044. Notably, the TSTR achieved a
ratio of 0.0192, showing that the generated synthetic data are 52 times more useful for
a forecasting task than the noisy real data, thus validating the AE as both an effective
noise filter and a high-fidelity data generator.

Keywords: Time Series. AutoEncoders. Synthetic Data. Machine Learning. Deep Lear-

ning.
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1 INTRODUCAO

O advento do Big Data e o avango exponencial do poder computacional impulsi-
onaram o Aprendizado de Méaquina Machine Learning (ML) para o centro da inovagao
tecnoldgica. Modelos de Deep Learning sao agora capazes de resolver problemas de alta
complexidade, desde o reconhecimento de imagens até a traducao de idiomas. No entanto,
o desempenho desses modelos é fundamentalmente dependente da qualidade e, principal-
mente, da quantidade de dados disponiveis para treinamento. Em muitos dominios criti-
cos—como o diagnéstico médico, a deteccao de fraudes financeiras ou o monitoramento de
sistemas industriais complexos—os dados sao escassos, caros, ou protegidos por rigorosas

leis de privacidade [1].

Essa dependéncia de grandes volumes de dados revela uma limitagao critica para a
aplicagao pratica de ML. A escassez de dados representa um dos principais gargalos para
o avanco da area, particularmente quando se trata de séries temporais, que capturam a
evolucao de um sistema ao longo do tempo. A coleta desse tipo de dado é frequentemente
problemética por razoes tanto técnicas quanto regulatorias: dados de sensores industriais
podem ser sigilosos, dados de pacientes sdo confidenciais Lei Geral de Protecao de Dados
e eventos de interesse, como falhas de equipamento ou anomalias financeiras, sao, por
defini¢ao, raros [2]. Consequentemente, essa caréncia de dados, especialmente de eventos
raros, leva a modelos de ML com dificuldade de generalizacao e incapazes de prever falhas

criticas.

Diante desse cenario, a Geragao de Dados Sintéticos (GDS) emerge como uma so-
lugao estratégica e poderosa. Em vez de depender exclusivamente da coleta de dados reais,
a GDS utilizando modelos generativos os utiliza para aprender a distribuigao estatistica
e as dependéncias temporais de um conjunto de dados existente. Uma vez treinado, o
modelo pode gerar novas amostras de dados que sao estatisticamente idénticas aos dados
reais, mas totalmente sintéticas e anoénimas. Essa abordagem permite simultaneamente
a criagao de conjuntos de dados vastos e diversificados, a protecao da privacidade de in-
dividuos e a simulagao de cenarios de eventos raros para testes de robustez de sistemas
3].

Dentre as diversas técnicas disponiveis para GDS, os Autoencoders (AE) destacam-
se como uma das ferramentas mais comuns para a geragao de séries temporais sintéticas.
Um AE é um tipo de rede neural nao supervisionada [1] que aprende a realizar duas ta-
refas complementares: primeiro, comprimir os dados de entrada em uma representagao de
baixa dimensao, chamada de espago latente, capturando apenas a esséncia da informacao
[4, 5]; segundo, descomprimir essa representacao de volta ao formato original. Esta arqui-

tetura de codificador-decodificador também é a base para modelos de sequéncia modernos
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[6]. O espago latente, portanto, torna-se um mapa das caracteristicas fundamentais dos
dados. Ao amostrar pontos desse espaco e passa-los pelo decodificador, é possivel gerar
dados novos e realistas que compartilham as mesmas caracteristicas essenciais dos dados
originais.

Este trabalho explora precisamente a aplicagdo de Autoencoders para a geracao de
dados sintéticos realistas de séries temporais, uma arquitetura ja explorada com sucesso
para tarefas em séries temporais, como a deteccao de anomalias [7]. Embora aborda-
gens como Redes Adversariais Generativas (GANs) [8] sejam populares, inclusive com
adaptagoes especificas para séries temporais [2, 3, 9], os Autoencoders oferecem vanta-
gens [1] significativas para este dominio, como um treinamento notavelmente mais esta-
vel—evitando problemas como o colapso de modo, onde o gerador aprende a produzir
apenas um tipo de amostra—e um espaco latente mais interpretavel. Contudo, o desafio
central ndo é apenas gerar dados, mas provar rigorosamente que os dados gerados sao
realistas, utilizando métricas de similaridade apropriadas [10, 11], e, mais importante,
uteis para aplicacoes praticas de ML, cuja qualidade pode ser inspecionada visualmente

por técnicas como t-SNE [12].

O objetivo geral deste trabalho é desenvolver e validar um pipeline metodologico
robusto para a geracdo de dados sintéticos de séries temporais. O foco da pesquisa é
investigar a eficacia de diferentes arquiteturas de Autoencoder Densa vs. 1D-CNN e esta-
belecer um protocolo de avaliacao rigoroso baseado em DTW, Wasserstein e TSTR capaz
de quantificar o realismo e a utilidade dos dados gerados, superando as limitagdes das

métricas de erro tradicionais.
Para alcancar o objetivo geral, os seguintes objetivos especificos sao definidos:

Analisar as limitagoes fundamentais de Autoencoders densos (baseline) na captura

de dependéncias temporais complexas em séries unicanais.

Propor uma arquitetura de Autoencoder Convolucional 1D (1D-CNN) adaptada
para a geracao de séries temporais multivaloradas, investigando sua capacidade de modelar

simultaneamente correlagoes espaciais entre canais e temporais.

Definir um protocolo de avaliagdo multidimensional, baseado em métricas de simi-
laridade de distribuicao utilizando a Distancia de Wasserstein, similaridade morfolégica
utilizando o DFW e utilidade em tarefas de ML com a métrica de TSTR, para validar

rigorosamente a fidelidade e o realismo de séries temporais sintéticas.

Comparar o desempenho da arquitetura convolucional (CNN) com o modelo denso
(baseline), quantificando a superioridade do modelo CNN na geragao de dados sintéticos

realistas, conforme mensurado pelo protocolo de avaliacao estabelecido.

A estrutura deste trabalho estd organizada para apresentar de forma sequencial o

problema, as solugoes propostas e a validacao.
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O Capitulo 2, Fundamentacao Teorica, abrange os conceitos essenciais que susten-
tam a metodologia, detalhando as Redes Neurais [13, 14, 15], as Redes Neurais Recor-
rentes (RNNs) e suas variantes avancadas (LSTM e GRU) [16, 6], e a teoria de Modelos

Generativos, focando especificamente nos Autoencoders [4, 1].

O Capitulo 3, Método de Pesquisa, detalha a metodologia adotada, incluindo a
caracterizagao do conjunto de dados de telemetria de propulsores, a evolucao do pré-
processamento (Unicanal para Multicanal), a modelagem comparativa das arquiteturas
Autoencoder Densa e 1D-CNN Multicanal, e a justificativa do protocolo de avaliagdo com
as seguintes métricas: Distancia de Wasserstein, DTW, TSTR, t-SNE [11, 10, 12].

Por fim, o Capitulo 4, Experimentos e Resultados, apresenta a analise compara-
tiva dos modelos, diagnosticando as principais diferencas da implementacao do baseline
Densa [8] e validando a superioridade da arquitetura 1D-CNN Multicanal em todas as
métricas de fidelidade e utilidade, e o Capitulo 5, Conclusao, sumariza as contribuigoes do
trabalho e sugere diregoes para pesquisas futuras, como a implementacao de Autoencoders

Condicionais e a comparagao com GANs [2].
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2 FUNDAMENTACAO TEORICA

Este capitulo apresenta os conceitos teéricos que fundamentam o desenvolvimento
deste trabalho, abrangendo as principais arquiteturas de redes neurais utilizadas para
o processamento de sequéncias temporais, bem como os fundamentos dos modelos ge-
nerativos aplicados a geracao de dados sintéticos. Sao abordados aspectos conceituais,
avancos historicos e aplicacoes praticas das arquiteturas mais relevantes no contexto de

aprendizado profundo.

2.1 Redes Neurais

As Redes Neurais Artificiais sdo modelos computacionais bio-inspirados, concei-
tualmente baseados na estrutura e funcionamento do cérebro humano, projetados para
identificar padroes complexos e aprender a partir de dados [13, 14]. A unidade de proces-
samento fundamental desses modelos é o neur6nio artificial ou um perceptron, que recebe
multiplos sinais de entrada, aplica pesos sinapticos a eles, soma os resultados ponderados
juntamente com um viés, ou bias e, em seguida, aplica uma funcao de ativacao nao linear

para produzir um sinal de saida [17].

CAMADA DE ENTRADA CAMADA OCULTA CAMADA DE SAIDA

Figura 1 — Diagrama de uma RNA.
Fonte: Adaptado de [18], Autor: TseKiChun.

Uma arquitetura muito comum como mostrado na Figura 1! é a feedforward, tam-
bém conhecida como Multi-Layer Perceptron [15]. Nesses modelos, os neur6nios sao or-

ganizados em camadas sucessivas. Tipicamente, essa arquitetura é composta por uma

1 TSEKICHUN. Neural Network Diagram. Science Learn. Disponfvel em <https://www.sciencelearn.

org.nz/images/5156-neural-network-diagram>. Acesso em: 15 nov 2025.


https://www.sciencelearn.org.nz/images/5156-neural-network-diagram
https://www.sciencelearn.org.nz/images/5156-neural-network-diagram
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Camada de Entrada (Input Layer), que recebe os dados brutos; uma ou mais Camadas
Ocultas (Hidden Layers), responsaveis pelo processamento e extragao de caracteristicas
em niveis crescentes de abstracao e uma Camada de Saida (Output Layer), que produz o
resultado final da rede, como uma classificagdo ou regressao. O termo feedforward (avango
direto) indica que o fluxo de informagao é unidirecional, onde os dados se propagam da
camada de entrada, através das camadas ocultas, até a camada de saida, sem a existéncia
de ciclos ou conexdes retroativas. Esta é a caracteristica que distingue as redes feedforward

das Redes Neurais Recorrentes, que serao abordadas.

O processo de treinamento de uma rede neural feedforward é tipicamente realizado
através do algoritmo de retropropagagao (backpropagation) [15]. Esse processo inicia-se
com uma propagacao forward, onde a entrada ¢é passada pela rede para gerar uma previsao.
Em seguida, a discrepancia entre a previsao da rede e o valor real esperado—quantificada
por uma fungao de perda (loss function) é calculada. Na fase de propagagao backward, o
algoritmo de backpropagation utiliza a regra da cadeia do cédlculo diferencial para deter-
minar o gradiente da fungdo de perda em relagdo a cada peso na rede. Por fim, ocorre
a atualizacao dos pesos, que sao ajustados na direcao oposta ao gradiente, geralmente
através de um método de otimizacao como o Stochastic Gradient Descent (SGD) ou suas

variantes (e.g., Adam, RMSProp), com o objetivo de minimizar o erro total.

Embora as redes feedforward sejam grandes aproximadores universais de fungoes,
como demonstrado por Hornik et al. [19], elas tratam cada entrada de forma independente.
Elas nao possuem mecanismos intrinsecos de memoria para reter informacoes sobre entra-
das passadas. Essa limitagao as torna inferiores as Redes Neurais Recorrentes para tarefas
que envolvem dados sequenciais ou temporais, onde o contexto e a ordem sao cruciais.

Essa lacuna motivou o desenvolvimento das arquiteturas recorrentes.

2.2 Redes Neurais Recorrentes

As Redes Neurais Recorrentes (RNNs) sao uma das classes mais importantes de
modelos para processamento de dados sequenciais [1], capazes de modelar dependéncias
temporais e contextuais ao longo de uma série de entradas. Diferentemente das redes
neurais tradicionais (feedforward), as RNNs mantém um estado interno que armazena
informacoes sobre entradas passadas, permitindo que o modelo capture rela¢oes temporais

entre observagoes [5, 4].

Apesar dessa capacidade inovadora de manter memoria temporal, o treinamento
de RNNs tradicionais apresenta desafios significativos devido a problemas como o desa-
parecimento e a explosao do gradiente, que dificultam o aprendizado de dependéncias de
longo prazo [20, 21]. Para mitigar essas limita¢oes fundamentais, foram propostas arquite-

turas recorrentes aprimoradas, como a Long Short-Term Memory (LSTM) [16] e a Gated
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Recurrent Unit (GRU) [6]. Essas variantes introduzem mecanismos de controle denomina-
dos gates, que permitem selecionar quais informacoes devem ser armazenadas, esquecidas
ou propagadas ao longo do tempo, estabilizando o fluxo do gradiente e melhorando subs-

tancialmente o aprendizado.

Mais especificamente, a arquitetura LSTM utiliza trés portas principais—entrada,
esquecimento e saida para controlar o fluxo de informacoes e o estado de memoria de
longo prazo. Isso permite que a rede retenha dependéncias relevantes por periodos ex-
tensos sem sofrer degradagao de gradiente [22]. A GRU, por sua vez, combina as funcoes
das portas em uma estrutura mais simples e computacionalmente eficiente, mantendo
desempenho competitivo em tarefas diversas [23]. Consequentemente, ambas as arquite-
turas tém se mostrado eficazes em modelagem de séries temporais complexas, como dados

meteorolégicos, sinais fisioldgicos e consumo energético [24, 25, 26].

A superioridade dessas arquiteturas torna-se evidente quando comparadas a mé-
todos tradicionais. Modelos lineares cldssicos, como ARIMA [27], assumem linearidade e
estacionariedade, o que limita sua capacidade de capturar dindmicas nao lineares e mu-
dancgas estruturais em séries reais. Em contraste, modelos baseados em LSTM e GRU
podem modelar relagoes altamente nao lineares, resultando em melhorias de desempe-
nho de 15-30% em relacdo a abordagens classicas, conforme evidenciado na competicao
M4 [28]. Essa capacidade de modelar complexidade torna as RNNs e suas variantes ideais

para contextos onde os dados exibem padroes cadticos ou irregulares.

Além dessas arquiteturas fundamentais, avangos recentes incorporam mecanismos
de atencao (attention mechanisms) as RNNs, permitindo que o modelo aprenda a pon-
derar diferentes instantes temporais conforme sua relevancia para a previsao [29, 30].
Outra melhoria significativa é o uso de arquiteturas bidirecionais [31], que processam se-
quéncias em ambas as diregoes, permitindo uma melhor compreensao do contexto global.
Essas inovacoes ampliaram consideravelmente o alcance das RNNs em aplicagoes como
previsao condicional de séries [32], deteccao de anomalias [7] e geragao de dados médicos

sintéticos [3].

Embora as RNNs tenham revolucionado a modelagem de sequéncias temporais,
uma nova fronteira emergiu no campo do aprendizado profundo: ndo apenas prever dados
futuros, mas gerar dados completamente novos e realistas que preservem as caracteristicas

essenciais dos dados originais.

2.3 Modelos Generativos e Aprendizado de Representacoes

Com o avango das redes neurais profundas, surgiram modelos capazes nao apenas
de classificar ou prever dados, mas também de gerar novas amostras coerentes com a

distribuicao original. Essa area, conhecida como aprendizado generativo, tornou-se central
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no campo de aprendizado de maquina moderno [4].

O objetivo fundamental dos modelos generativos é aprender a distribuicao de pro-
babilidade subjacente aos dados e, a partir dela, gerar novas instancias plausiveis. Entre
os principais paradigmas estao os Autoencoders Variacionais (VAEs), os Modelos Autore-
gressivos e as Redes Adversariais Generativas (GANs). Cada um apresenta vantagens e
limitagoes distintas em termos de estabilidade de treinamento, controle de diversidade e
fidelidade das amostras [8].

Os modelos baseados em aprendizado de representacao (representation learning)
buscam extrair caracteristicas latentes de alta relevancia dos dados, permitindo a mode-
lagem de padroes complexos e o aprendizado nao supervisionado [4]. Essa abordagem foi
fundamental para o desenvolvimento de arquiteturas capazes de lidar com dados multidi-

mensionais e nao estruturados, como séries temporais multivaloradas e imagens.

Reconhecendo a necessidade de modelar explicitamente dependéncias temporais,
modelos recorrentes também foram adaptados ao aprendizado generativo, especialmente
em dominios onde os dados apresentam forte dependéncia temporal. Abordagens como as
Recurrent Conditional GANs (RCGANS) [3] combinam redes recorrentes com o paradigma
adversarial, possibilitando a geragao de séries temporais continuas e realistas, amplamente

utilizadas em contextos médicos e financeiros.

2.4 Geragao de Dados Sintéticos com AutoEncoders (AE)

Os Autoencoders (AE) sdo uma classe de redes neurais artificiais fundamental-
mente voltada para o aprendizado de representagdes nao supervisionado (representation

learning) [4, 1]. Sua arquitetura se baseia em um processo de codificagao e decodificagao.

A arquitetura de um Autoencoder é composta por duas sub-redes: o codificador
(encoder) e o decodificador (decoder). O codificador tem a fungao de receber os dados de
entrada, e comprimi-los em uma representacao latente de dimensionalidade reduzida. Esta
representagao, também conhecida como c6digo ou espago latente (latent space), forma
um gargalo (bottleneck) na rede. O decodificador, por sua vez, realiza a tarefa oposta: ele

recebe o codigo e tenta reconstruir a entrada original.

O treinamento de um AE ¢é otimizado para minimizar o erro de reconstrucao entre
a entrada e a saida reconstruida. Ao forcar os dados a passarem por esse gargalo de baixa
dimensionalidade, a rede é obrigada a aprender apenas as caracteristicas mais salientes e

essenciais dos dados para conseguir reconstrui-los com fidelidade [1].

Embora os Autoencoders tradicionais como o ilustrado na Figura 2? sejam bons

para reducao de dimensionalidade e extragao de caracteristicas, eles nao sao inerentemente

2 Awasthi, Ayushi. Types of Autoencoders. GeeksForGeeks. Disponivel em <https://www.
geeksforgeeks.org/numpy /types-of-autoencoders/>. Acesso em: 15 nov 2025.


https://www.geeksforgeeks.org/numpy/types-of-autoencoders/
https://www.geeksforgeeks.org/numpy/types-of-autoencoders/
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ACamada de Entrada _Espago Latente‘ Camada de saida -

Dados de entrada B e Dados de saida

Figura 2 — Arquitetura de um AutoEncoder Simples

Fonte: Adaptado de [33], Autor: Ayushi Awasthi

generativos. O espaco latente que eles aprendem pode ser irregular ou desorganizado, o
que significa que amostrar um ponto aleatério desse espago e passa-lo ao decodificador

nao garante a geragao de uma saida realista.

Para solucionar essa limitacao e transformar os AEs em modelos generativos ro-
bustos, foram introduzidos os Autoencoders Variacionais (VAEs). O VAE impde uma
restrigao probabilistica ao espaco latente. Em vez de mapear uma entrada para um tnico
vetor, o codificador do VAE mapeia a entrada para os parametros de uma distribuicao de
probabilidade, tipicamente uma média e uma varidncia. Isso forca o espago latente a ser

continuo e estruturado, permitindo uma interpolagao suave entre os pontos de dados.

Essa abordagem variacional permite que o modelo funcione de forma generativa:
para criar novos dados sintéticos, basta amostrar um vetor de uma distribuicao padrao e
alimenta-lo diretamente na rede decodificadora, que o transformara em uma nova amostra
coerente com os dados originais [1]. No contexto de séries temporais, AEs e VAEs podem
ser construidos utilizando arquiteturas recorrentes, como LSTMs ou GRUs, em seus co-
dificadores e decodificadores, permitindo ao modelo aprender representacoes latentes de

sequéncias temporais complexas. [7].

2.5 Diferencas entre CNN e Densa

O MLP Densa (Perceptron Multicamadas), embora seja um aproximador universal
de fungoes [19], apresenta limitagdes para o processamento de séries temporais, pois trata
cada entrada de forma independente [1], carecendo de mecanismos intrinsecos de meméria

para reter o contexto ou a ordem dos eventos passados.

Essa arquitetura implementada recebeu a janela de série temporal tratando-a como
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um vetor tnico, o que destréi a informagao sequencial e impede a captura da dinamica
temporal, resultando na incapacidade de modelar a morfologia dos eventos de disparo.
Diante dessa falha em capturar dependéncias temporais complexas, a migragdo para o
Autoencoder Convolucional 1D (1D-CNN) se torna uma necessidade metodoldgica justi-

ficada pelo seu viés indutivo [4].

Diferente do modelo Densa, uma camada ConwvlD aplica um conjunto de filtros ou
kernels que deslizam através da dimensao temporal da série [34], o que permite que cada
filtro se especialize em detectar um padrao local especifico, como a subida ou a descida de
um pulso. Este mecanismo confere & 1D-CNN as propriedades de localidade e invaridncia a
translagao [34], garantindo que o modelo possa detectar a forma dos eventos em qualquer

ponto da sequéncia e permitindo, assim, uma replicacao fiel da forma temporal.

2.6 Colapso de modo

O colapso de modo (mode collapse) é um problema critico em modelos generati-
vos, como Autoencoders (AEs) e Redes Adversariais Generativas (GANs) [8], caracterizado
pela falha do modelo em capturar toda a diversidade da distribuicdo de dados de trei-
namento [1, 2]. Em vez de aprender a gerar o espectro completo de variagoes presentes
no conjunto de dados, o gerador concentra-se em produzir repetidamente apenas um ou
um subconjunto limitado de tipos de amostras, ignorando as variagoes, os eventos raros
ou os modos estatisticos menos frequentes [1]. No contexto do conjunto de dados deste
trabalho, o conjunto de dados de telemetria de propulsores que possui longos periodos de
inatividade intercalados por surtos (bursts), ha uma forte tendéncia de o modelo genera-
tivo sofrer colapso, aprendendo a replicar apenas o estado de zero (0 modo mais comum),

e sendo incapaz de gerar a dindmica temporal complexa dos disparos [8, 2, 3].

Nos Autoencoders especificamente, o colapso de modo esté associado a qualidade e
continuidade do espago latente [1]. Embora um AE possa ser um bom copiador atingindo
um erro de reconstrucao baixo, se o seu espaco latente for ndo-continuo, a amostragem
aleatoria de novos pontos a partir desse espago pode resultar na geracao de dados sem
sentido, caracterizando o colapso [1]. Visualmente, a ocorréncia de colapso de modo é
confirmada quando o cluster de dados sintéticos, em graficos t-SNE, nao se sobrepoe ou
nao vive dentro do cluster de dados reais, indicando que o modelo falhou em aprender a
estrutura correta da distribuigao subjacente [12]. Embora o colapso de modo seja um risco
central, os Autoencoders sao frequentemente escolhidos pela sua estabilidade de treina-
mento, o que é uma vantagem significativa para atenuar esse problema em comparagao
com as GANs [1].
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3 METODO DE PESQUISA

Este capitulo detalha os procedimentos metodolégicos adotados para a construgao
e validacao do sistema de geracdo de dados sintéticos. A metodologia é apresentada em
quatro etapas: a sele¢do e caracterizacao do conjunto de dados, o pré-processamento e
janelamento, a modelagem das arquiteturas de autoencoder e, finalmente, o protocolo de

validacao e avaliacao.

3.1 Conjunto de Dados

O conjunto de dados selecionado para este trabalho foi o Spacecraft Thruster Fi-
ring Tests Dataset', uma colecao ptiblica de telemetria de propulsores de espaconaves. A
escolha foi motivada por quatro caracteristicas principais que o tornam um benchmark

ideal e desafiador para a geracao de dados sintéticos:

Volume e Complexidade: Com mais de 30GB de dados e 80 milhdes de pontos de
medicao, o dataset é grande o suficiente para treinar modelos de Deep Learning complexos

sem owverfitting trivial.

Natureza Fisica Real: Diferente de datasets sintéticos ou financeiros, estes dados
representam um processo fisico do mundo real. Isso implica que existe uma dindmica

subjacente uma lei fisica que um modelo generativo bem-sucedido deve aprender.

Sinais em Surto: Os dados sao caracterizados por longos periodos de inatividade
valores em zero ou préximos de zero, intercalados por surtos (bursts) de alta magnitude
e curta duracdo, que representam os disparos. Este é um desafio notério para modelos
generativos, que tendem a sofrer colapso de modo aprendendo a gerar apenas o estado de

zero, que é o mais comum [8].

Natureza Multivalorada e Causal: Os dados nao sao apenas um sinal, mas um sis-
tema. A documentacao do dataset revela a existéncia de multiplos canais correlacionados,
notavelmente a coluna ton o comando ON/OFF, thrust a for¢a medida e mfr o fluxo de
massa. Um dado sintético realista deve, portanto, honrar essa relacdo de causa-e-efeito

um comando ton=1 deve ser seguido por um aumento em thrust e mfr.

A documentacao do dataset também especifica que os propulsorea SNO1 a SN12
sao unidades de teste em solo ideais para treinamento, enquanto os SN13 a SN24 sao

unidades de voo ideais para teste, fornecendo uma separacao natural entre treino e teste.

L FLEITH, Patrick. Spacecraft Thruster Firing Tests Dataset. Kaggle. Disponivel em <https://www.
kaggle.com /datasets/patrickfleith /spacecraft-thruster-firing-tests-dataset /data>. Acesso em: 15 out.
2025.


https://www.kaggle.com/datasets/patrickfleith/spacecraft-thruster-firing-tests-dataset/data
https://www.kaggle.com/datasets/patrickfleith/spacecraft-thruster-firing-tests-dataset/data
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3.2 Pré-processamento

O pré-processamento dos dados foi realizado em duas fases experimentais distintas,

refletindo a evolucao da complexidade do modelo.

Fase 1: Abordagem Baseline Unicanal: Na primeira experimentacao, uma aborda-

gem simplificada foi adotada para estabelecer um baseline.
Selecao de Coluna: Apenas a coluna ‘thrust® foi utilizada.

Concatenacao: Todos os arquivos .csv referentes aos propulsores de treino SNO1-
SN12 foram lidos e seus dados de thrust concatenados em uma unica série temporal

univalorada.
Normalizagao: A série completa foi normalizada para o intervalo [0, 1].

Janelamento: A série foi segmentada usando uma janela deslizante de tamanho
W = 1000 timesteps e um passo stride S = 200. Isso gerou um conjunto de dados de

treino com N janelas de dimensao de 1000 nimeros reais.

Esta abordagem, embora simples, mistura dados de diferentes propulsores e ignora
as correlagoes entre canais, servindo como base para identificar as limita¢oes de um modelo

ingénuo.

Fase 2: Abordagem Multicanal: Com base nos resultados da Fase 1, foi refinado o

pré-processamento para refletir a verdadeira natureza fisica dos dados.

Selecao de Colunas: Foram selecionadas as trés colunas que definem o evento de

disparo: ton, thrust e mfr.

Concatenacao: Os dados dos arquivos de treino SNO1-SN12 foram lidos e concate-
nados, preservando os trés canais, resultando em uma tnica série de formato (shape) L,

onde L é o comprimento total.

Normalizacao: A normalizagao foi aplicada ao conjunto de dados de 3 colunas.
Uma vantagem desta abordagem é que o ton, sendo binario 0 ou 1, é mapeado para si
mesmo 0 — 0,1 — 1, enquanto thrust e mfr sdo normalizados para o intervalo [0, 1]. Neste

caso a coluna ton funciona como causa e os valores de thrust e mfr como consequéncia.

Janelamento: A janela deslizante com W = 1000 foi aplicada sobre os dados
normalizados. Devido a restri¢goes de meméria RAM encontradas durante os experimentos,
o passo foi aumentado para S = 500 reduzindo a sobreposi¢ao e, consequentemente, o

numero total de janelas para viabilizar o treinamento.

Esse processo resultou em um conjunto de dados final de treino com N’ janelas

de dimensao R'099%3 onde cada janela contém 1000 timesteps e 3 canais correlacionados
) b

prontos para serem utilizados por um modelo convolucional capaz de explorar tanto a

dimensao temporal quanto a correlacao entre canais.



35

3.3 Modelagem da Arquitetura

A modelagem também seguiu a progressao de duas fases, comparando um baseline

simples com uma arquitetura avancgada.

Modelo 1 Autoencoder Densa MLP: O primeiro modelo foi um Autoencoder Densa,

ou Perceptron Multicamadas MLP.

Arquitetura: O encoder recebia a janela de 1000 pontos, tratando-a como um vetor
Unico, e a comprimia através de camadas Dense 128, 64 até um espacgo latente de 16

dimensoes. O decoder espelhava esse processo 16 — 64 — 128 — 1000.

Problemas Encontrados: Como detalhado nos resultados, este modelo falhou em
capturar a dindmica temporal. Desta maneira o modelo aprendeu apenas a média esta-

tistica das janelas, gerando ruido em vez de disparos.

Modelo 2: Autoencoder Convolucional 1D CNN: As métricas resultantes da baseline

de modelo Densa motivou a migracao para uma arquitetura de Rede Neural Convolucional

1D CNN.

Localidade: O filtro aprende padroes em pequenas sub-sequéncias a subida de um

pulso, o que é ideal para dados temporais.

Invariancia a Translagdo: Uma vez que um filtro aprende a detectar um disparo,
ele pode detectd-lo em qualquer lugar da janela seja ele no inicio, meio ou fim. O modelo

Densa nao pode fazer isso.

Fungdo de Perda Hibrida: Como o modelo agora era multicanal, com tipos de
dados mistos, uma fun¢ao de perda tnica como MAE ou MSE era inadequada. O canal
ton é um problema de classificagao binaria 0 ou 1, enquanto os canais thrust e mfr sao
problemas de regressao valores continuos. Aplicar uma perda de regressao a um canal de

classificacao levaria a gradientes instaveis e resultados subdtimos.

Para resolver isso, uma funcao de perda hibrida customizada foi desenvolvida,

tratando cada canal com sua métrica apropriada.

Canais de Regressao thrust e ‘mfr‘: Para os canais continuos, foi utilizado o Erro
Médio Absoluto, ou MAE. Esta métrica é robusta a outliers, o que é ideal para os picos
e ruidos dos disparos do propulsor. A equacao calcula o erro médio da seguinte forma:
1 w
WZL% — 9il (3.1)

=1

Lyiag =

Nesta formula, Lysag € o valor final da perda. O termo % Z}Zl representa a média sobre
todos os W passos de tempo da janela, onde W é 1000. A expressao |y; — ¢;| calcula a
distancia absoluta, ou seja, sem sinal negativo, entre o valor real y; e o valor previsto ¢;

em cada passo de tempo.



36

Canal de Classificacao ton: Para o canal binario, foi utilizada a Entropia Cruzada
Binaria, ou BCE, que ¢é a perda padrao para problemas de classificacdo zero ou um.
Ela penaliza o modelo de forma logaritmica quando ele prevé a classe errada. A férmula
conceitual é:

1w
Lpcr = W Z[yz log(pi) + (1 — y;) log(1 — py)] (3.2)

=1

Aqui, Lgcg é o erro de classificagdo. O y; é o rotulo real, zero ou um, e p; é a
probabilidade prevista pela rede, um valor entre zero e um. A equacao funciona como
uma chave légica: se o valor real y; é 1, a formula se simplifica para — log(p;), penalizando
previsoes distantes de 1. Se o valor real y; é 0, a férmula se torna —log(1 — p;), penali-
zando previsoes proximas de 1. O logaritmo garante que previsoes confiantemente erradas
recebam uma penalidade muito alta, guiando o modelo rapidamente para a convergéncia.
Na implementacao, a versao com logits, que opera sobre as saidas lineares da rede, é usada

por sua maior estabilidade numérica.

Perda Total: A perda total Ly ¢ uma soma ponderada das perdas de cada canal:

Ltotal = Won * LBCE + Wihrust * LMAEit + wmfr : LMAEim (33)

As perdas de BCE e MAE operam em escalas numéricas diferentes; um erro de
classificacado quantitativo de BCE pode ser muito maior que um erro de regressao qua-
litativo de MAE, especialmente no inicio do treinamento. Se nao fossem ponderadas, o
otimizador poderia focar apenas em corrigir o erro do canal ton, efetivamente esmagando
e ignorando os erros de forma do thrust e mfr. O peso wy,, = 1.5 foi determinado para
balancear a contribuicao de cada perda, assegurando que o modelo aprenda a sequéncia
de comando ton e, simultaneamente, dé a devida importancia a replicacao das formas

fisicas correlacionadas nos canais thrust e mir.

Tabela 1 — Comparacao das arquiteturas de Autoencoder implementadas.

Componente | Modelo 1 (MLP) | Modelo 2 (CNN 1D)

Entrada R (unicanal) RY090%3 (multicanal)

Encoder Dense: 1000—128—64—16 ConvlD (32, 64) + MaxPoo-
ling

Espaco Latente | 16 dimensoes Comprimido

Decoder Dense: 16—64—128—1000 UpSampling + Conv1D

Fun¢io de Perda | MAE Hibrida (BCE + MAE)

Viés Indutivo Nenhum Localidade + Invariancia

Canais 1 (thrust) 3 (ton, thrust, mfr)

A Tabela 1 apresenta uma visdo comparativa das duas arquiteturas implemen-
tadas, destacando as diferengas fundamentais que mostram a superioridade esperada do

modelo CNN para a tarefa de geracao de séries temporais.
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3.4 Validagao e Avaliagcao

Esta secao detalha as métricas escolhidas para o protocolo de avaliacao, com foco
em justificar por que as métricas tradicionais MAE/MSE foram descartadas em favor de
um conjunto mais robusto Wasserstein, DTW, TSTR, t-SNE.

A Insuficiéncia do MAE e MSE: O Erro Médio Absoluto MAE e o Erro Quadratico
Médio MSE sao métricas padrao para problemas de regressao. Em um Autoencoder, elas
medem o erro de reconstrucao, ou seja, a diferenca ponto-a-ponto entre a entrada X e a

salda reconstruida X.

Razoes de falha na geragao: Um Autoencoder pode atingir um MSE de reconstrucao
proximo de zero o que acaba provando que é um bom copiador, mas ainda ser um péssimo

gerador. Isso ocorre por dois motivos:

Colapso de Modo: O modelo pode aprender a reconstruir perfeitamente, mas seu
espaco latente pode ser nao-continuo. Ao tentar amostrar um novo ponto Z do espaco

latente, o decodificador pode gerar dados sem sentido.

Foco no Ponto, Nao na Forma: Como o MSE/MAE medem o erro ponto-a-ponto,
eles sdo extremamente sensiveis a desalinhamentos temporais. Se um disparo sintético
X fake tiver a forma perfeita, mas ocorrer 10 timesteps atrasado em relacao a um disparo

real X,..q;, 0 MSE registrara um erro massivo, julgando-o incorretamente como uma falha.
Por esta razao, métricas que avaliam a distribuicao e a forma sao necessarias.
Protocolo de Avaliagao Proposto:

Distancia de Wasserstein: Foi escolhida para comparar as distribuicoes estatisticas
marginais de Xyeq € Xyare.A Wasserstein mede o custo para mover uma distribuicao para
se igualar a outra, sendo robusta mesmo quando as distribuigdes nao se sobrepoem [11].

Um valor baixo indica que os histogramas dos dados sao similares.

Dynamic Time Warping DTW: Foi escolhido para medir a similaridade de forma.
O DTW ¢ um algoritmo que encontra o alinhamento nao-linear ideal entre duas séries

temporais, calculando a distancia de forma independentemente de desalinhamentos [10].

t-SNE (t-distributed Stochastic Neighbor Embedding): Foi escolhida como a métrica
de avaliagao visual da estrutura. O t-SNE é um algoritmo de redugao de dimensionalidade

R1000%3 para um espago 2D, preservando as

que projeta as janelas de alta dimensao
relagdes de vizinhanga [12]. O objetivo é visualizar se o cluster de dados sintéticos laranja
se sobrepoe ou vive dentro do cluster de dados reais azul, indicando que o modelo aprendeu

a estrutura correta.

TSTR Train-on-Synthetic, Test-on-Real: Foi escolhida como a métrica de utilidade.

Esta é a validagao mais pragmatica analisam se os dados sintéticos sao bons o suficiente
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para substituir os reais em uma tarefa de ML. Ao treinar um modelo de regressdo nos

dados sintéticos e testa-lo nos reais, medimos diretamente sua utilidade.
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4 EXPERIMENTOS E RESULTADOS

Neste capitulo, sao apresentados e discutidos os resultados comparativos dos dois
experimentos definidos na metodologia: o baseline Autoencoder Densa Unicanal e o Au-
toencoder 1D-CNN Multicanal.

4.1 Resultados e Analise Comparativa

A experimentacao foi conduzida em duas fases sequenciais. As métricas da primeira
fase, diagnosticadas pelo protocolo de avaliacao, forneceram a motivacao direta para a

segunda.

Tabela 2 — Hiperparametros e configuracoes de treinamento dos modelos.

Hiperparametro Modelo MLP Modelo CNN

Taxa de Aprendizado le-5 le-5

Ntmero de Epocas 47 48

Fungao de Perda MAE Hibrida (BCE+MAE)
Otimizador Adam Adam

A Tabela 2 sumariza as configuragoes de treinamento utilizadas em ambos os

experimentos, garantindo comparabilidade entre os modelos.

Experimento 1: Baseline com Autoencoder Densa. Inicialmente, um Autoencoder
Densa MLP, unicanal apenas ‘thrust, foi treinado. Esta arquitetura foi escolhida como

um baseline por sua simplicidade.

Resultados do Modelo Densa: Apos estabilizacao do treino usando uma fungao de
perca com Erro Absoluto Médio (MAFE) e taxa de aprendizado de 1°7°, 0 modelo treinou
por 47 épocas e produziu os resultados quantitativos listados na Tabela 3. Embora o TSTR
Ratio de 0.2534 parecesse promissor, as outras métricas DTW e Wasserstein apresentaram

valores altos, indicando uma falha fundamental.

Diagndstico da Falha: A falha do modelo baseline foi confirmada de forma inequi-

voca pelas métricas qualitativas e visuais, que expuseram a natureza do falso positivo do
TSTR.

Dificuldade na Geragdo de FEventos: Como demonstrado na Figura 3, o modelo
falhou em gerar disparos. As amostras sintéticas em verde degeneraram para ruido gaus-
siano centrado na média estatistica da janela, sem nenhuma semelhanca com a dindmica

dos dados reais.

Falha mna Distribuicdo: A Figura 4 mostra que o modelo ignorou o modo esta-

tistico mais importante dos dados: o pico massivo em zero propulsor desligado. Em vez
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disso, gerou uma distribuicao normal simples, resultando na alta Distancia de Wasserstein
0.2647.

Falha Estrutural: O grafico t-SNE na Figura 5 visualiza essa falha. Os dados reais
azul e sintéticos laranja formam dois clusters completamente separados, provando que os

dados gerados nao vivem no mesmo espaco estrutural dos dados reais.

Analise da Falha: A arquitetura Densa da maneira em que foi implementada foi
estruturalmente incapaz de aprender padroes temporais. Ao achatar a janela de 1000
pontos em um vetor, ela destréi a informagao sequencial. O TSTR Ratio de 0.25 foi um
artefato que simplesmente provou que prever a média era uma estratégia de previsao

superior a tentar modelar o ruido dos dados reais.

Amostra de Janela (indice 199055)

— Real
0.0 Reconstruido
Sintético (Gerado)

(] 200 400 600 800 1000

Amnctra da lansla findice 1201081

Figura 3 — Amostra visual do Real, Reconstruido, Sintético do modelo Densa MLP.

Linha Azul (Real): Este é o dado original. E um sinal complexo e ruidoso, mas
possui uma forma ou evento muito claro: uma queda abrupta e um vale (prato) entre os

timesteps 500 e 650, antes de subir novamente.

Linha Laranja (Reconstruido): Esta linha mostra a tentativa do autoencoder de
recriar o sinal azul apés comprimi-lo e descomprimi-lo. E um fracasso. O modelo ignora
completamente o evento principal (o vale) e produz apenas um ruido que segue a média

geral do sinal.

Linha Verde (Sintético - Gerado): Esta ¢ a linha mais importante. Ela mostra o
que o modelo realmente aprendeu sobre a estrutura dos dados. Quando pedimos a ele para
gerar uma nova amostra ‘do zero‘ (a partir do espago latente), ele ndo produz nenhum
evento, nenhum vale, nenhuma forma. Ele gera apenas ruido estatistico, oscilando em

torno de uma média.
Este grafico expoe a falha da implementagao do modelo Densa:

Destruicao do Tempo: Um modelo Densa (MLP) nao entende o tempo. Para ele,
o timestep 5 nao é antes do timestep 6. Ele achata a janela de 1000 pontos em um tnico

vetor e tenta aprender correlagoes.

Aprendizado da Média, nao da Forma: Como resultado, o modelo Densa nao apren-

deu a forma de um disparo ou de um vale. Ele aprendeu apenas as propriedades estatisticas
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médias da janela por exemplo: ‘os valores geralmente ficam entre 0.5 e 1.5¢

A Prova da Falha: A linha verde (Sintético) é a maior prova. Como o modelo nao
aprendeu nenhuma estrutura temporal, ao gerar um novo dado, ele apenas produz ruido

que satisfaz as propriedades estatisticas médias que ele aprendeu.

Comparagéo da Distribuicéo Marginal (Real vs. Sintético)

= real
Sintético

Figura 4 — Histograma Wasserstein do modelo Denso MLP.

O pico azul, Real, que é extremamente alto e fino em x = 0, representa o estado
de repouso do propulsor. Ele nos diz que a vasta maioria dos seus dados reais tem o valor
exato de zero, indicando que o propulsor esta desligado. Esta é a caracteristica dominante

da distribuicao.

O pico laranja, Sintético, mostra o que o modelo gerou. Fica claro que o modelo
falhou completamente em replicar este pico em zero. Em vez de gerar o valor zero, ele
esta gerando ruido centrado préoximo de zero, uma distribuicao normal que nao existe nos

dados reais.

Em suma, o modelo nao aprendeu que os dados tém dois estados, um de repouso
em zero e um de disparo com valores positivos. Ele achatou esses dois estados em uma
unica distribuicao média ruidosa. Esta discrepancia visual, a auséncia do pico em zero,
é exatamente o que a Distancia de Wasserstein quantificou com um valor alto. O grafico
presente na Figura 3 e o niimero contam a mesma historia: o modelo falhou em aprender

a distribuicao correta.

Visualizagao t-SNE (1000 amostras)

o Real

sintético

Figura 5 — t-SNE do modelo Denso MLP.

Este gréafico prova que a estrutura dos dados sintéticos ¢ muito diferente da estru-

tura dos dados reais. O modelo ndo aprendeu a geometria ou o mapa dos dados originais.
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Ele estd gerando dados (o ruido que é mostrado na Figura 3) que sdo tao diferentes dos

dados reais que o t-SNE os agrupa em um continente quase que completamente separado.

Experimento 2: Autoencoder 1D-CNN Multicanal Com base nas dificuldades
encontradas do modelo Densa, a arquitetura 1D-CNN Multicanal com perda hibrida foi
implementada. Este modelo treinou estavelmente por 48 épocas, devido ao grande volume

de dados e demonstrou sucesso em todas as métricas de avaliacao.

Tabela 3 — Comparacao de Métricas: Modelo Densa vs. 1D-CNN Multicanal.

Métrica ‘ Baseline Densa Unicanal ‘ 1D-CNN Multicanal
Dist. Wasserstein 0.2647 0.0447
DTW Médio 14.22 7.3088
TSTR Ratio 0.2534 0.0192

O modelo CNN se mostrou superior ao Densa e resolveu quase todas as falhas

identificadas no baseline:

Figura 6: Em forte contraste com o modelo Densa, o 1D-CNN aprendeu a relacao
de causa e efeito. O dado sintético verde mostra claramente que os disparos de thrust e
mfr sdo gerados em resposta e perfeitamente alinhados com os pulsos no canal ton. Isso
prova que o modelo nao esta apenas gerando formas, mas aprendendo a fisica subjacente

do sistema.

DTW: O DTW médio caiu pela metade de 14.22 para 7.30. Este resultado quan-
tifica o que a figura 6 mostra: a arquitetura 1D-CNN, por seu viés indutivo de localidade,

foi capaz de aprender e replicar a forma dos eventos de disparo.

Distribuicao de Wasserstein: A distancia caiu para 0.044, uma reducao de 83% em
relacdo ao modelo Densa. O grafico de histograma Figura 7 confirma que as distribui¢oes
sao quase idénticas, indicando que o modelo replicou corretamente tanto o estado de

repouso pico em zero quanto a distribuicao dos valores de disparo.

TSTR: O ratio de 0.0192 1.9% ¢é um resultado bom. O MSE do baseline treinado
no real foi de 5890 indicando que os dados reais sao ruidosos e dificeis de prever, enquanto

o modelo treinado no sintético obteve um MSE de apenas 112.

Tabela 4 — Andlise detalhada do experimento TSTR (Train-on-Synthetic, Test-on-Real).

Configuragao ‘ MSE (Teste Real) ‘ Interpretacao

TRTR (Baseline) 5890 Dados reais sao ruidosos e
dificeis de prever

TSTR (CNN Sintético) 112 Dados sintéticos sao limpos

e bem estruturados

TSTR Ratio | 0.0192 (1.9%) |
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Conforme demonstrado na Tabela 4, o MSE do baseline (treinado no real) foi de
5890 (indicando que os dados reais sdo ruidosos e dificeis de prever), enquanto o modelo

treinado no sintético obteve um MSE de apenas 112.

Amostra 151120 - Canal ton Amostra 151120 - Canal thrust Amostra 151120 - Canal mfr
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Figura 6 — Amostras visuais do Real, Reconstruido, Sintético do modelo 1D-CNN Multi-
canal.

Aniélise da Reconstrucao (Linha Laranja):

Canal ton (Canal da Esquerda): A linha ‘Reconstruido’ (laranja) estd perfeita-
mente sobreposta a linha Real (azul). O modelo aprendeu a copiar o sinal de comando

binério com 100% de precisdo.

Canais thrust e mfr (Canais do Centro e Direita): A linha ‘Reconstruido’ (laranja)
age como uma versao suavizada e limpa da linha Real (azul). O modelo capturou a forma

principal do disparo (o burst) e filtrou com sucesso o ruido de alta frequéncia.
Anilise da Geragao (Linha Verde):

Canal ton (Canal da Esquerda): A linha ‘Sintético‘ (Gerado) (verde) nao é ruido.
Ela é uma sequéncia de pulsos binarios limpos e nitidos, assim como os dados reais. O

modelo aprendeu o que é um "comando".

Canais thrust e mfr (Canais do Centro e Direita): A linha Sintético (verde) gera
surtos limpos e com a forma correta. Eles se parecem com as linhas reconstruidas (laranja),

mostrando que o modelo aprendeu a forma ideal de um disparo, porém sem o ruido.

Comparagéo da distribuicao Marginal (Real vs. Sintético - Canal Thrust)

= real (Thrust)
sintético

Figura 7 — Histograma Wasserstein do canal thrust no modelo CNN.

O Pico em Zero: Na Figura 7, a caracteristica mais importante que é observada
dos dados reais (linha azul) é o pico imenso e agudo em z = 0, que representa o propulsor

desligado. O modelo sintético (linha laranja) replicou este pico perfeitamente em capturar
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a estrutura bimodal, o pico em zero e a cauda dos disparos. Mostrando que ele aprendeu

que o estado mais comum do sistema é desligado.

A Cauda: A direita do pico zero, hd uma pequena cauda de valores positivos (entre
0 e 1.5). Esta ¢é a distribuigao dos valores dos disparos quando o propulsor esta ligado. O
modelo sintético (linha laranja) também sobrepde e replica a forma desta cauda com alta
fidelidade.

Visualizagao t-SNE (1000 amostras - Canal Thrust)
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Figura 8 — t-SNE do canal ‘thrust’ no modelo CNN.

A maior parte da Figura 8, no centro e a direita, mostra uma boa sobreposicao
entre os pontos azuis (Real) e laranjas (Sintético). Isso significa que, para a maioria dos
tipos de disparos, o modelo 1D-CNN aprendeu a estrutura corretamente e esta gerando

amostras sintéticas que sao estruturalmente muito similares as reais. E por isso que as

métricas de DTW e Wasserstein foram melhores como mostrado na Tabela 3.



45

5 CONCLUSAO

Este trabalho se propos a desenvolver e validar um pipeline para a geracao de
dados sintéticos de séries temporais que fossem quantitativamente tteis. O desafio central
era superar os artificios comuns da geragdo de dados temporais, como o colapso de modo

e a falha em capturar dindmicas complexas, utilizando arquiteturas de Autoencoder.

A metodologia progrediu de um baseline simples para uma solu¢ao mais completa
e eficaz. O experimento inicial, utilizando um Autoencoder Densa unicanal, provou-se ina-
dequado. Conforme diagnosticado pelo protocolo de avaliagao, a implementacao utilizada
da arquitetura Densa falhou em aprender a forma dos disparos alto DTW de 14.22 e a
distribuicao dos dados alto Wasserstein de 0.2647, gerando apenas ruido. Esta métrica foi

importante, pois serviu como a principal motivagao para a arquitetura proposta.

A solugao foi um Autoencoder Convolucional 1D CNN multivalorada, projetado
para resolver as deficiéncias do baseline. O viés indutivo da CNN permitiu o aprendizado
de padroes locais a forma do disparo, enquanto a abordagem multivalorada usando ton,
thrust, mfr permitiu que o modelo aprendesse a relagao fisica de causa e efeito subjacente.
A introducao de uma funcao de perda hibrida BCE para ton, MAE para thrust/mfr foi

fundamental para otimizar corretamente os diferentes tipos de dados.

A introducdo da func@o de perda hibrida foi uma decisao metodoldgica que se
provou fundamental para o sucesso do modelo 1D-CNN. O modelo enfrentou o desafio
de otimizar duas tarefas distintas simultaneamente: a classificagdo binaria do canal ton
e a regressao continua dos canais thrust e mfr. A aplicacdo de uma perda de regressao
singular, como o MAE, para todos os canais, teria falhado em penalizar previsdes proba-
bilisticamente erradas para o ton. Por outro lado, a Entropia Cruzada Binaria, ou BCE,
e o MAE operam em escalas numéricas drasticamente diferentes. O erro logaritmico da
BCE, sendo quantitativo, teria esmagado o erro linear do MAE, qualitativo, durante o
treinamento. Isso faria o otimizador focar apenas em acertar o comando ton, ignorando a
forma do thrust. A soma ponderada foi a solugao, balanceando a contribui¢ao de cada erro
e forcando o modelo a aprender ambas as tarefas simultaneamente: acertar o comando de

causa e replicar a forma do efeito fisico.

Os resultados da arquitetura 1D-CNN multivalorada validaram a abordagem de
forma conclusiva. O sucesso do modelo foi holistico: ele aprendeu a replicar a distribuicao
estatistica, atingindo uma Distancia de Wasserstein de 0.0447, e a forma temporal dos
disparos, reduzindo o erro de DTW pela metade para 7.3088. A avaliagao visual confirmou
que o modelo aprendeu a correlacio de causa e efeito entre os canais. A métrica de utilidade

TSTR, com um ratio de 0.0192, serviu como uma validag¢ao secundaria, demonstrando
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que o sinal gerado era limpo e livre do ruido de alta frequéncia presente nos dados reais,
cujo MSE foi de 5890 contra 112 do modelo sintético.

Diante desta andlise, pode-se afirmar que os objetivos deste trabalho foram em
sua maioria atingidos. A expressao ‘em sua maioria‘ é utilizada pois, embora as métricas
quantitativas de forma DTW e distribuicao Wasserstein tenham sido um sucesso, a métrica
de andlise estrutural t-SNE revela limitacoes. A visualizacao t-SNE mostrou que a nuvem
de dados sintéticos sobrepoe-se corretamente a nuvem principal de dados reais. Contudo, a
analise também expds clusters isolados: uma regiao de dados reais que o modelo sintético
falhou em cobrir, configurando um ponto cego, e uma regiao de dados sintéticos que nao

possui correspondéncia real, caracterizando a geragao de artefatos.

Apesar destas limitagoes estruturais, foi desenvolvido um pipeline validado que
quantifica a qualidade dos dados. O trabalho demonstra empiricamente a superioridade
de arquiteturas 1D-CNN sobre MLPs para a sintese de séries temporais e valida o uso de
Autoencoders como ferramentas eficazes de filtragem de ruido. Soma-se a estas limitacoes
o fato de que o processo de treinamento, ao concatenar todos os propulsores, gera um

modelo médio, e ndo um modelo especifico para cada tipo de propulsor.

O presente trabalho pode ser aplicado principalmente em areas de ciéncia de dados
e inteligéncia artificial em conjuntos de dados como dados incompletos, dados invalidos,

quantia baixa de dados e para validagao de dados que nao possuam validadores reais.

Para aprimorar e estender a aplicabilidade do modelo generativo desenvolvido,
sugerem-se dois caminhos principais de pesquisa, focados em aumentar o controle sobre a

sintese de dados e estabelecer um comparativo com arquiteturas generativas competitivas.

O primeiro caminho ¢ a implementagao de um Autoencoder Condicional (CAE).
Atualmente, o modelo gera dados aleatérios a partir de um espaco latente nao-condicional.
O préximo passo seria adotar uma arquitetura de Autoencoder Condicional, utilizando
metadados ex6genos do sistema, como o Numero de Série (SN) do propulsor, o modo de
teste ou as condigoes de pressao, como condigdes de entrada para o decodificador. Tal
condicionamento, andlogo ao principio das GANs Condicionais [35], permitiria a geragao
de dados sob demanda, possibilitando, por exemplo, a sintese de um disparo especifico do
SNO05 a 10 bar de pressao.

O segundo caminho foca na Comparagdo com Arquiteturas Generativas Adver-
sariais (GANs). Embora o Autoencoder tenha sido selecionado pela sua estabilidade de
treinamento, evitando problemas como o colapso de modo [1], é fundamental quantifi-
car seu desempenho em relacdo a modelos Generativos Adversariais de estado-da-arte
para séries temporais. Sugere-se aplicar o mesmo protocolo de avaliagao robusto ja esta-
belecido, comparando a fidelidade e utilidade do Autoencoder com arquiteturas como a

Time-series Generative Adversarial Networks (TimeGAN) [2]. Essa comparagao deve ser
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focada nas métricas de utilidade TSTR ( Train-on-Synthetic, Test-on-Real) e de similari-
dade morfolégica DTW (Dynamic Time Warping) [10] para garantir uma andlise objetiva

da qualidade dos dados gerados.






[10]

[11]

[12]

[13]

49

REFERENCIAS

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.1.]: MIT
Press, 2016.

YOON, J.; JARRETT, D.; SCHAAR, M. van der. Time-series generative adversarial
networks. In: Advances in Neural Information Processing Systems 32 (NeurIPS
2019). [S.1.: s.n.], 2019. p. 585-596.

ESTEBAN, C.; HYLAND, S. L.; RATSCH, G. Real-valued (medical) time series
generation with recurrent conditional GANs. In: NIPS 2017 Workshop on Machine
Learning for Health (ML4H). [S.1.: s.n.], 2017. ArXiv preprint arXiv:1706.02633.

BENGIO, Y.; COURVILLE, A.; VINCENT, P. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, IEEE, v. 35, n. 8, p. 1798-1828, 2013.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning internal

representations by error propagation. [S.1.], 1985.

CHO, K. et al. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: ASSOCIATION FOR COMPUTATIONAL
LINGUISTICS. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). [S.1.], 2014. p. 1724-1734.

MALHOTRA, P. et al. Time-series anomaly detection using LSTM-based
autoencoders. Proceedings of the 24th Furopean Symposium on Artificial Neural

Networks (ESANN), p. 473-478, 2016.

GOODFELLOW, 1. et al. Generative adversarial nets. In: Advances in Neural
Information Processing Systems 27 (NIPS 2014). [S.1.: s.n.], 2014. p. 2672-2680.

HAO, C.; DU, J.; LIANG, H. Imbalanced fault diagnosis of rolling bearing using
data synthesis based on multi-resolution fusion generative adversarial networks.
Machines, v. 10, n. 5, p. 295, 2022.

BERNDT, D. J.; CLIFFORD, J. Using dynamic time warping to find patterns in
time series. In: KDD Workshop on Knowledge Discovery in Databases. [S.l.: s.n.],
1994. p. 359-370.

RUBNER, Y.; TOMASI, C.; GUIBAS, L. J. The earth mover’s distance as a metric
for image retrieval. International Journal of Computer Vision, Springer, v. 40, n. 2,
p. 99-121, 2000.

MAATEN, L. Van der; HINTON, G. Visualizing data using t-sne. Journal of
Machine Learning Research, v. 9, p. 2579-2605, 2008.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, Springer, v. 5, n. 4, p.
115-133, 1943.



o0

[14] ROSENBLATT, F. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, American Psychological
Association, v. 65, n. 6, p. 386, 1958.

[15] RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations
by back-propagating errors. Nature, Nature Publishing Group, v. 323, n. 6088, p.
533-536, 1986.

[16) HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural
computation, MIT Press, v. 9, n. 8, p. 1735-1780, 1997.

[17] HAYKIN, S. O. Neural networks and learning machines. [S.1.]: Prentice Hall, 2007.
[18] TseKiChun. Neural network diagram. 2023.

[19] HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks
are universal approximators. Neural networks, Elsevier, v. 2, n. 5, p. 359-366, 1989.

[20] BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, IEEE, v. 5,
n. 2, p. 157-166, 1994.

[21] PASCANU, R.; MIKOLOV, T.; BENGIO, Y. On the difficulty of training recurrent
neural networks. In: PMLR. International Conference on Machine Learning (ICML).
[S.1], 2013. p. 1310-1318.

[22] GREFF, K. et al. LSTM: A search space odyssey. IEEE Transactions on Neural
Networks and Learning Systems, IEEE, v. 28, n. 10, p. 2222-2232, 2017.

[23] JOZEFOWICZ, R.; ZAREMBA, W.; SUTSKEVER, I. An empirical exploration of
recurrent network architectures. In: PMLR. International Conference on Machine
Learning (ICML). [S.1.], 2015. p. 2342-2350.

[24] MALHOTRA, P. et al. Long short term memory networks for anomaly detection in
time series. In: Proceedings of the 23rd European Symposium on Artificial Neural
Networks (ESANN). [S.1.: s.n.], 2015. p. 485-490.

[25] CHE, Z. et al. Recurrent neural networks for multivariate time series with missing
values. Scientific Reports, Nature Publishing Group, v. 8, n. 1, p. 6085, 2018.

[26] LI, S. et al. Learning to encode time series as irregularly sampled spike trains:
Theories and applications. IEEFE Transactions on Neural Networks and Learning
Systems, IEEE, v. 30, n. 5, p. 1281-1293, 2018.

[27] MAKRIDAKIS, S.; SPILIOTIS, E.; ASSIMAKOPOULOS, V. The m4 competition:
Results, findings, conclusion and way forward. International Journal of Forecasting,
Elsevier, v. 36, n. 1, p. 823, 2020.

[28] SMYL, S. A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting. International Journal of Forecasting, Elsevier, v. 36, n. 1,
p. 75-85, 2020.



51

[29] LUONG, M.-T.; PHAM, H.; MANNING, C. D. Effective approaches to attention-
based neural machine translation. In: ASSOCIATION FOR COMPUTATIONAL
LINGUISTICS. Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (EMNLP). [S.1.], 2015. p. 1412-1421.

[30] VASWANI, A. et al. Attention is all you need. In: Advances in Neural Information
Processing Systems 30 (NIPS 2017). [S.1.: s.n.], 2017. p. 5998-6008.

[31] SCHUSTER, M.; PALIWAL, K. K. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, IEEE, v. 45 n. 11, p. 2673-2681, 1997.

[32) BOROVYKH, A.; BOHTE, S.; OOSTERLEE, C. W. Conditional time series
forecasting with convolutional neural networks. In: Artificial Neural Networks and
Machine Learning — ICANN 2017. [S.1.]: Springer International Publishing, 2017. p.
738-746.

[33] AWASTHI, A. Types of AutoEncoders. 2025.

[34] LECUN, Y. et al. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, IEEE, v. 86, n. 11, p. 22782324, 1998.

[35] MIRZA, M.; OSINDERO, S. Conditional generative adversarial nets. In: NIPS 201/
Workshop on Deep Learning. [S.l.: s.n.], 2014. ArXiv preprint arXiv:1411.1784.



	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	INTRODUÇÃO
	FUNDAMENTAÇÃO TEÓRICA
	Redes Neurais
	Redes Neurais Recorrentes
	Modelos Generativos e Aprendizado de Representações
	Geração de Dados Sintéticos com AutoEncoders (AE)
	Diferenças entre CNN e Densa
	Colapso de modo

	MÉTODO DE PESQUISA
	Conjunto de Dados
	Pré-processamento
	Modelagem da Arquitetura
	Validação e Avaliação

	EXPERIMENTOS E RESULTADOS
	Resultados e Análise Comparativa

	CONCLUSÃO
	Referências

