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“O que é real? Como você define o ‘real‘?”

— Morpheus (Matrix)





SILVA, GIAN ROBERTO PEREIRA DA. Síntese de Séries Temporais utilizando
AutoEncoders para Geração de Dados Sintéticos Realistas. 51 p. Trabalho de
Conclusão de Curso (Bacharelado em Ciência da Computação) – Universidade Estadual
do Paraná, Apucarana–PR, 2025.

RESUMO

A geração de dados sintéticos de séries temporais é uma solução crucial para mitigar a
escassez de dados em domínios como indústria, finanças e saúde. Este trabalho propõe e
valida uma metodologia baseada em Autoencoders (AE) para a síntese de dados realistas
e úteis. Focando em um conjunto de dados complexo de telemetria de propulsores de
espaçonaves, que exibe características ruidosas e em surto, a pesquisa demonstra uma
progressão metodológica. Inicialmente, um AutoEncoder Densa unicanal é avaliado como
baseline, demonstrando-se incapaz de capturar a dinâmica temporal DTW de 14.22 e a
distribuição estatística Wasserstein de 0.2647 dos eventos, gerando apenas ruído. Esta
falha motiva a arquitetura proposta: um Autoencoder Convolucional 1D CNN multicanal,
que modela a relação física de causa-e-efeito entre o comando de acionamento ton e a
resposta do propulsor thrust, mfr. A avaliação é realizada com um protocolo robusto
DTW, Distância de Wasserstein, t-SNE e uma métrica de utilidade TSTR - Train-on-
Synthetic, Test-on-Real. Os resultados demonstram a superioridade da CNN, que reduziu
o erro de forma DTW para 7.30 e replicou a distribuição de dados Wasserstein de 0.044.
Notavelmente, o TSTR atingiu um ratio de 0.0192, validando o AE como um filtro de
ruído eficaz e um gerador de dados de alta fidelidade.

Palavras-chave: Séries Temporais. AutoEncoders. Dados Sintéticos. Aprendizado de Má-
quina. Aprendizado Profundo.





SILVA, GIAN ROBERTO PEREIRA DA. Time Series Synthesis using AutoEn-
coders for Realistic Synthetic Data Generation. 51 p. Final Project (Bachelor of
Science in Computer Science) – State University of Paraná, Apucarana–PR, 2025.

ABSTRACT

The generation of synthetic time series data is a crucial solution to mitigate data scarcity
in domains such as industry, finance, and healthcare. This work proposes and validates
a methodology based on Autoencoders for the synthesis of realistic and useful data. Fo-
cusing on a complex spacecraft thruster telemetry dataset, characterized by noisy and
burst-like behaviors, the research demonstrates a methodological progression. Initially, a
single-channel Dense MLP AE is evaluated as a baseline, showing an inability to capture
temporal dynamics DTW of 14.22 and the statistical distribution Wasserstein of 0.2647 of
the events, producing only noise. This shortcoming motivates the proposed architecture:
a multi-channel 1D Convolutional Autoencoder CNN, which models the physical cause-
and-effect relationship between the actuation command ton and the thruster response
thrust, mfr. The evaluation follows a robust protocol DTW, Wasserstein Distance, t-
SNE and includes a utility metric TSTR – Train-on-Synthetic, Test-on-Real. The results
demonstrate the superiority of the CNN, which reduced the shape error DTW to 7.30
and replicated the data distribution Wasserstein of 0.044. Notably, the TSTR achieved a
ratio of 0.0192, showing that the generated synthetic data are 52 times more useful for
a forecasting task than the noisy real data, thus validating the AE as both an effective
noise filter and a high-fidelity data generator.

Keywords: Time Series. AutoEncoders. Synthetic Data. Machine Learning. Deep Lear-
ning.
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1 INTRODUÇÃO

O advento do Big Data e o avanço exponencial do poder computacional impulsi-
onaram o Aprendizado de Máquina Machine Learning (ML) para o centro da inovação
tecnológica. Modelos de Deep Learning são agora capazes de resolver problemas de alta
complexidade, desde o reconhecimento de imagens até a tradução de idiomas. No entanto,
o desempenho desses modelos é fundamentalmente dependente da qualidade e, principal-
mente, da quantidade de dados disponíveis para treinamento. Em muitos domínios críti-
cos—como o diagnóstico médico, a detecção de fraudes financeiras ou o monitoramento de
sistemas industriais complexos—os dados são escassos, caros, ou protegidos por rigorosas
leis de privacidade [1].

Essa dependência de grandes volumes de dados revela uma limitação crítica para a
aplicação prática de ML. A escassez de dados representa um dos principais gargalos para
o avanço da área, particularmente quando se trata de séries temporais, que capturam a
evolução de um sistema ao longo do tempo. A coleta desse tipo de dado é frequentemente
problemática por razões tanto técnicas quanto regulatórias: dados de sensores industriais
podem ser sigilosos, dados de pacientes são confidenciais Lei Geral de Proteção de Dados
e eventos de interesse, como falhas de equipamento ou anomalias financeiras, são, por
definição, raros [2]. Consequentemente, essa carência de dados, especialmente de eventos
raros, leva a modelos de ML com dificuldade de generalização e incapazes de prever falhas
críticas.

Diante desse cenário, a Geração de Dados Sintéticos (GDS) emerge como uma so-
lução estratégica e poderosa. Em vez de depender exclusivamente da coleta de dados reais,
a GDS utilizando modelos generativos os utiliza para aprender a distribuição estatística
e as dependências temporais de um conjunto de dados existente. Uma vez treinado, o
modelo pode gerar novas amostras de dados que são estatisticamente idênticas aos dados
reais, mas totalmente sintéticas e anônimas. Essa abordagem permite simultaneamente
a criação de conjuntos de dados vastos e diversificados, a proteção da privacidade de in-
divíduos e a simulação de cenários de eventos raros para testes de robustez de sistemas
[3].

Dentre as diversas técnicas disponíveis para GDS, os Autoencoders (AE) destacam-
se como uma das ferramentas mais comuns para a geração de séries temporais sintéticas.
Um AE é um tipo de rede neural não supervisionada [1] que aprende a realizar duas ta-
refas complementares: primeiro, comprimir os dados de entrada em uma representação de
baixa dimensão, chamada de espaço latente, capturando apenas a essência da informação
[4, 5]; segundo, descomprimir essa representação de volta ao formato original. Esta arqui-
tetura de codificador-decodificador também é a base para modelos de sequência modernos
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[6]. O espaço latente, portanto, torna-se um mapa das características fundamentais dos
dados. Ao amostrar pontos desse espaço e passá-los pelo decodificador, é possível gerar
dados novos e realistas que compartilham as mesmas características essenciais dos dados
originais.

Este trabalho explora precisamente a aplicação de Autoencoders para a geração de
dados sintéticos realistas de séries temporais, uma arquitetura já explorada com sucesso
para tarefas em séries temporais, como a detecção de anomalias [7]. Embora aborda-
gens como Redes Adversariais Generativas (GANs) [8] sejam populares, inclusive com
adaptações específicas para séries temporais [2, 3, 9], os Autoencoders oferecem vanta-
gens [1] significativas para este domínio, como um treinamento notavelmente mais está-
vel—evitando problemas como o colapso de modo, onde o gerador aprende a produzir
apenas um tipo de amostra—e um espaço latente mais interpretável. Contudo, o desafio
central não é apenas gerar dados, mas provar rigorosamente que os dados gerados são
realistas, utilizando métricas de similaridade apropriadas [10, 11], e, mais importante,
úteis para aplicações práticas de ML, cuja qualidade pode ser inspecionada visualmente
por técnicas como t-SNE [12].

O objetivo geral deste trabalho é desenvolver e validar um pipeline metodológico
robusto para a geração de dados sintéticos de séries temporais. O foco da pesquisa é
investigar a eficácia de diferentes arquiteturas de Autoencoder Densa vs. 1D-CNN e esta-
belecer um protocolo de avaliação rigoroso baseado em DTW, Wasserstein e TSTR capaz
de quantificar o realismo e a utilidade dos dados gerados, superando as limitações das
métricas de erro tradicionais.

Para alcançar o objetivo geral, os seguintes objetivos específicos são definidos:

Analisar as limitações fundamentais de Autoencoders densos (baseline) na captura
de dependências temporais complexas em séries unicanais.

Propor uma arquitetura de Autoencoder Convolucional 1D (1D-CNN) adaptada
para a geração de séries temporais multivaloradas, investigando sua capacidade de modelar
simultaneamente correlações espaciais entre canais e temporais.

Definir um protocolo de avaliação multidimensional, baseado em métricas de simi-
laridade de distribuição utilizando a Distância de Wasserstein, similaridade morfológica
utilizando o DFW e utilidade em tarefas de ML com a métrica de TSTR, para validar
rigorosamente a fidelidade e o realismo de séries temporais sintéticas.

Comparar o desempenho da arquitetura convolucional (CNN) com o modelo denso
(baseline), quantificando a superioridade do modelo CNN na geração de dados sintéticos
realistas, conforme mensurado pelo protocolo de avaliação estabelecido.

A estrutura deste trabalho está organizada para apresentar de forma sequencial o
problema, as soluções propostas e a validação.
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O Capítulo 2, Fundamentação Teórica, abrange os conceitos essenciais que susten-
tam a metodologia, detalhando as Redes Neurais [13, 14, 15], as Redes Neurais Recor-
rentes (RNNs) e suas variantes avançadas (LSTM e GRU) [16, 6], e a teoria de Modelos
Generativos, focando especificamente nos Autoencoders [4, 1].

O Capítulo 3, Método de Pesquisa, detalha a metodologia adotada, incluindo a
caracterização do conjunto de dados de telemetria de propulsores, a evolução do pré-
processamento (Unicanal para Multicanal), a modelagem comparativa das arquiteturas
Autoencoder Densa e 1D-CNN Multicanal, e a justificativa do protocolo de avaliação com
as seguintes métricas: Distância de Wasserstein, DTW, TSTR, t-SNE [11, 10, 12].

Por fim, o Capítulo 4, Experimentos e Resultados, apresenta a análise compara-
tiva dos modelos, diagnosticando as principais diferenças da implementação do baseline
Densa [8] e validando a superioridade da arquitetura 1D-CNN Multicanal em todas as
métricas de fidelidade e utilidade, e o Capítulo 5, Conclusão, sumariza as contribuições do
trabalho e sugere direções para pesquisas futuras, como a implementação de Autoencoders
Condicionais e a comparação com GANs [2].
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2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta os conceitos teóricos que fundamentam o desenvolvimento
deste trabalho, abrangendo as principais arquiteturas de redes neurais utilizadas para
o processamento de sequências temporais, bem como os fundamentos dos modelos ge-
nerativos aplicados à geração de dados sintéticos. São abordados aspectos conceituais,
avanços históricos e aplicações práticas das arquiteturas mais relevantes no contexto de
aprendizado profundo.

2.1 Redes Neurais

As Redes Neurais Artificiais são modelos computacionais bio-inspirados, concei-
tualmente baseados na estrutura e funcionamento do cérebro humano, projetados para
identificar padrões complexos e aprender a partir de dados [13, 14]. A unidade de proces-
samento fundamental desses modelos é o neurônio artificial ou um perceptron, que recebe
múltiplos sinais de entrada, aplica pesos sinápticos a eles, soma os resultados ponderados
juntamente com um viés, ou bias e, em seguida, aplica uma função de ativação não linear
para produzir um sinal de saída [17].

Figura 1 – Diagrama de uma RNA.

Fonte: Adaptado de [18], Autor: TseKiChun.

Uma arquitetura muito comum como mostrado na Figura 11 é a feedforward, tam-
bém conhecida como Multi-Layer Perceptron [15]. Nesses modelos, os neurônios são or-
ganizados em camadas sucessivas. Tipicamente, essa arquitetura é composta por uma
1 TSEKICHUN. Neural Network Diagram. Science Learn. Disponível em <https://www.sciencelearn.

org.nz/images/5156-neural-network-diagram>. Acesso em: 15 nov 2025.

https://www.sciencelearn.org.nz/images/5156-neural-network-diagram
https://www.sciencelearn.org.nz/images/5156-neural-network-diagram


28

Camada de Entrada (Input Layer), que recebe os dados brutos; uma ou mais Camadas
Ocultas (Hidden Layers), responsáveis pelo processamento e extração de características
em níveis crescentes de abstração e uma Camada de Saída (Output Layer), que produz o
resultado final da rede, como uma classificação ou regressão. O termo feedforward (avanço
direto) indica que o fluxo de informação é unidirecional, onde os dados se propagam da
camada de entrada, através das camadas ocultas, até a camada de saída, sem a existência
de ciclos ou conexões retroativas. Esta é a característica que distingue as redes feedforward
das Redes Neurais Recorrentes, que serão abordadas.

O processo de treinamento de uma rede neural feedforward é tipicamente realizado
através do algoritmo de retropropagação (backpropagation) [15]. Esse processo inicia-se
com uma propagação forward, onde a entrada é passada pela rede para gerar uma previsão.
Em seguida, a discrepância entre a previsão da rede e o valor real esperado—quantificada
por uma função de perda (loss function) é calculada. Na fase de propagação backward, o
algoritmo de backpropagation utiliza a regra da cadeia do cálculo diferencial para deter-
minar o gradiente da função de perda em relação a cada peso na rede. Por fim, ocorre
a atualização dos pesos, que são ajustados na direção oposta ao gradiente, geralmente
através de um método de otimização como o Stochastic Gradient Descent (SGD) ou suas
variantes (e.g., Adam, RMSProp), com o objetivo de minimizar o erro total.

Embora as redes feedforward sejam grandes aproximadores universais de funções,
como demonstrado por Hornik et al. [19], elas tratam cada entrada de forma independente.
Elas não possuem mecanismos intrínsecos de memória para reter informações sobre entra-
das passadas. Essa limitação as torna inferiores às Redes Neurais Recorrentes para tarefas
que envolvem dados sequenciais ou temporais, onde o contexto e a ordem são cruciais.
Essa lacuna motivou o desenvolvimento das arquiteturas recorrentes.

2.2 Redes Neurais Recorrentes

As Redes Neurais Recorrentes (RNNs) são uma das classes mais importantes de
modelos para processamento de dados sequenciais [1], capazes de modelar dependências
temporais e contextuais ao longo de uma série de entradas. Diferentemente das redes
neurais tradicionais (feedforward), as RNNs mantêm um estado interno que armazena
informações sobre entradas passadas, permitindo que o modelo capture relações temporais
entre observações [5, 4].

Apesar dessa capacidade inovadora de manter memória temporal, o treinamento
de RNNs tradicionais apresenta desafios significativos devido a problemas como o desa-
parecimento e a explosão do gradiente, que dificultam o aprendizado de dependências de
longo prazo [20, 21]. Para mitigar essas limitações fundamentais, foram propostas arquite-
turas recorrentes aprimoradas, como a Long Short-Term Memory (LSTM) [16] e a Gated
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Recurrent Unit (GRU) [6]. Essas variantes introduzem mecanismos de controle denomina-
dos gates, que permitem selecionar quais informações devem ser armazenadas, esquecidas
ou propagadas ao longo do tempo, estabilizando o fluxo do gradiente e melhorando subs-
tancialmente o aprendizado.

Mais especificamente, a arquitetura LSTM utiliza três portas principais—entrada,
esquecimento e saída para controlar o fluxo de informações e o estado de memória de
longo prazo. Isso permite que a rede retenha dependências relevantes por períodos ex-
tensos sem sofrer degradação de gradiente [22]. A GRU, por sua vez, combina as funções
das portas em uma estrutura mais simples e computacionalmente eficiente, mantendo
desempenho competitivo em tarefas diversas [23]. Consequentemente, ambas as arquite-
turas têm se mostrado eficazes em modelagem de séries temporais complexas, como dados
meteorológicos, sinais fisiológicos e consumo energético [24, 25, 26].

A superioridade dessas arquiteturas torna-se evidente quando comparadas a mé-
todos tradicionais. Modelos lineares clássicos, como ARIMA [27], assumem linearidade e
estacionariedade, o que limita sua capacidade de capturar dinâmicas não lineares e mu-
danças estruturais em séries reais. Em contraste, modelos baseados em LSTM e GRU
podem modelar relações altamente não lineares, resultando em melhorias de desempe-
nho de 15–30% em relação a abordagens clássicas, conforme evidenciado na competição
M4 [28]. Essa capacidade de modelar complexidade torna as RNNs e suas variantes ideais
para contextos onde os dados exibem padrões caóticos ou irregulares.

Além dessas arquiteturas fundamentais, avanços recentes incorporam mecanismos
de atenção (attention mechanisms) às RNNs, permitindo que o modelo aprenda a pon-
derar diferentes instantes temporais conforme sua relevância para a previsão [29, 30].
Outra melhoria significativa é o uso de arquiteturas bidirecionais [31], que processam se-
quências em ambas as direções, permitindo uma melhor compreensão do contexto global.
Essas inovações ampliaram consideravelmente o alcance das RNNs em aplicações como
previsão condicional de séries [32], detecção de anomalias [7] e geração de dados médicos
sintéticos [3].

Embora as RNNs tenham revolucionado a modelagem de sequências temporais,
uma nova fronteira emergiu no campo do aprendizado profundo: não apenas prever dados
futuros, mas gerar dados completamente novos e realistas que preservem as características
essenciais dos dados originais.

2.3 Modelos Generativos e Aprendizado de Representações

Com o avanço das redes neurais profundas, surgiram modelos capazes não apenas
de classificar ou prever dados, mas também de gerar novas amostras coerentes com a
distribuição original. Essa área, conhecida como aprendizado generativo, tornou-se central
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no campo de aprendizado de máquina moderno [4].

O objetivo fundamental dos modelos generativos é aprender a distribuição de pro-
babilidade subjacente aos dados e, a partir dela, gerar novas instâncias plausíveis. Entre
os principais paradigmas estão os Autoencoders Variacionais (VAEs), os Modelos Autore-
gressivos e as Redes Adversariais Generativas (GANs). Cada um apresenta vantagens e
limitações distintas em termos de estabilidade de treinamento, controle de diversidade e
fidelidade das amostras [8].

Os modelos baseados em aprendizado de representação (representation learning)
buscam extrair características latentes de alta relevância dos dados, permitindo a mode-
lagem de padrões complexos e o aprendizado não supervisionado [4]. Essa abordagem foi
fundamental para o desenvolvimento de arquiteturas capazes de lidar com dados multidi-
mensionais e não estruturados, como séries temporais multivaloradas e imagens.

Reconhecendo a necessidade de modelar explicitamente dependências temporais,
modelos recorrentes também foram adaptados ao aprendizado generativo, especialmente
em domínios onde os dados apresentam forte dependência temporal. Abordagens como as
Recurrent Conditional GANs (RCGANs) [3] combinam redes recorrentes com o paradigma
adversarial, possibilitando a geração de séries temporais contínuas e realistas, amplamente
utilizadas em contextos médicos e financeiros.

2.4 Geração de Dados Sintéticos com AutoEncoders (AE)

Os Autoencoders (AE) são uma classe de redes neurais artificiais fundamental-
mente voltada para o aprendizado de representações não supervisionado (representation
learning) [4, 1]. Sua arquitetura se baseia em um processo de codificação e decodificação.

A arquitetura de um Autoencoder é composta por duas sub-redes: o codificador
(encoder) e o decodificador (decoder). O codificador tem a função de receber os dados de
entrada, e comprimi-los em uma representação latente de dimensionalidade reduzida. Esta
representação, também conhecida como código ou espaço latente (latent space), forma
um gargalo (bottleneck) na rede. O decodificador, por sua vez, realiza a tarefa oposta: ele
recebe o código e tenta reconstruir a entrada original.

O treinamento de um AE é otimizado para minimizar o erro de reconstrução entre
a entrada e a saída reconstruída. Ao forçar os dados a passarem por esse gargalo de baixa
dimensionalidade, a rede é obrigada a aprender apenas as características mais salientes e
essenciais dos dados para conseguir reconstruí-los com fidelidade [1].

Embora os Autoencoders tradicionais como o ilustrado na Figura 22 sejam bons
para redução de dimensionalidade e extração de características, eles não são inerentemente
2 Awasthi, Ayushi. Types of Autoencoders. GeeksForGeeks. Disponível em <https://www.

geeksforgeeks.org/numpy/types-of-autoencoders/>. Acesso em: 15 nov 2025.

https://www.geeksforgeeks.org/numpy/types-of-autoencoders/
https://www.geeksforgeeks.org/numpy/types-of-autoencoders/
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Figura 2 – Arquitetura de um AutoEncoder Simples

Fonte: Adaptado de [33], Autor: Ayushi Awasthi

generativos. O espaço latente que eles aprendem pode ser irregular ou desorganizado, o
que significa que amostrar um ponto aleatório desse espaço e passá-lo ao decodificador
não garante a geração de uma saída realista.

Para solucionar essa limitação e transformar os AEs em modelos generativos ro-
bustos, foram introduzidos os Autoencoders Variacionais (VAEs). O VAE impõe uma
restrição probabilística ao espaço latente. Em vez de mapear uma entrada para um único
vetor, o codificador do VAE mapeia a entrada para os parâmetros de uma distribuição de
probabilidade, tipicamente uma média e uma variância. Isso força o espaço latente a ser
contínuo e estruturado, permitindo uma interpolação suave entre os pontos de dados.

Essa abordagem variacional permite que o modelo funcione de forma generativa:
para criar novos dados sintéticos, basta amostrar um vetor de uma distribuição padrão e
alimentá-lo diretamente na rede decodificadora, que o transformará em uma nova amostra
coerente com os dados originais [1]. No contexto de séries temporais, AEs e VAEs podem
ser construídos utilizando arquiteturas recorrentes, como LSTMs ou GRUs, em seus co-
dificadores e decodificadores, permitindo ao modelo aprender representações latentes de
sequências temporais complexas. [7].

2.5 Diferenças entre CNN e Densa

O MLP Densa (Perceptron Multicamadas), embora seja um aproximador universal
de funções [19], apresenta limitações para o processamento de séries temporais, pois trata
cada entrada de forma independente [1], carecendo de mecanismos intrínsecos de memória
para reter o contexto ou a ordem dos eventos passados.

Essa arquitetura implementada recebeu a janela de série temporal tratando-a como
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um vetor único, o que destrói a informação sequencial e impede a captura da dinâmica
temporal, resultando na incapacidade de modelar a morfologia dos eventos de disparo.
Diante dessa falha em capturar dependências temporais complexas, a migração para o
Autoencoder Convolucional 1D (1D-CNN) se torna uma necessidade metodológica justi-
ficada pelo seu viés indutivo [4].

Diferente do modelo Densa, uma camada Conv1D aplica um conjunto de filtros ou
kernels que deslizam através da dimensão temporal da série [34], o que permite que cada
filtro se especialize em detectar um padrão local específico, como a subida ou a descida de
um pulso. Este mecanismo confere à 1D-CNN as propriedades de localidade e invariância à
translação [34], garantindo que o modelo possa detectar a forma dos eventos em qualquer
ponto da sequência e permitindo, assim, uma replicação fiel da forma temporal.

2.6 Colapso de modo

O colapso de modo (mode collapse) é um problema crítico em modelos generati-
vos, como Autoencoders (AEs) e Redes Adversariais Generativas (GANs) [8], caracterizado
pela falha do modelo em capturar toda a diversidade da distribuição de dados de trei-
namento [1, 2]. Em vez de aprender a gerar o espectro completo de variações presentes
no conjunto de dados, o gerador concentra-se em produzir repetidamente apenas um ou
um subconjunto limitado de tipos de amostras, ignorando as variações, os eventos raros
ou os modos estatísticos menos frequentes [1]. No contexto do conjunto de dados deste
trabalho, o conjunto de dados de telemetria de propulsores que possui longos períodos de
inatividade intercalados por surtos (bursts), há uma forte tendência de o modelo genera-
tivo sofrer colapso, aprendendo a replicar apenas o estado de zero (o modo mais comum),
e sendo incapaz de gerar a dinâmica temporal complexa dos disparos [8, 2, 3].

Nos Autoencoders especificamente, o colapso de modo está associado à qualidade e
continuidade do espaço latente [1]. Embora um AE possa ser um bom copiador atingindo
um erro de reconstrução baixo, se o seu espaço latente for não-contínuo, a amostragem
aleatória de novos pontos a partir desse espaço pode resultar na geração de dados sem
sentido, caracterizando o colapso [1]. Visualmente, a ocorrência de colapso de modo é
confirmada quando o cluster de dados sintéticos, em gráficos t-SNE, não se sobrepõe ou
não vive dentro do cluster de dados reais, indicando que o modelo falhou em aprender a
estrutura correta da distribuição subjacente [12]. Embora o colapso de modo seja um risco
central, os Autoencoders são frequentemente escolhidos pela sua estabilidade de treina-
mento, o que é uma vantagem significativa para atenuar esse problema em comparação
com as GANs [1].
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3 MÉTODO DE PESQUISA

Este capítulo detalha os procedimentos metodológicos adotados para a construção
e validação do sistema de geração de dados sintéticos. A metodologia é apresentada em
quatro etapas: a seleção e caracterização do conjunto de dados, o pré-processamento e
janelamento, a modelagem das arquiteturas de autoencoder e, finalmente, o protocolo de
validação e avaliação.

3.1 Conjunto de Dados

O conjunto de dados selecionado para este trabalho foi o Spacecraft Thruster Fi-
ring Tests Dataset1, uma coleção pública de telemetria de propulsores de espaçonaves. A
escolha foi motivada por quatro características principais que o tornam um benchmark
ideal e desafiador para a geração de dados sintéticos:

Volume e Complexidade: Com mais de 30GB de dados e 80 milhões de pontos de
medição, o dataset é grande o suficiente para treinar modelos de Deep Learning complexos
sem overfitting trivial.

Natureza Física Real: Diferente de datasets sintéticos ou financeiros, estes dados
representam um processo físico do mundo real. Isso implica que existe uma dinâmica
subjacente uma lei física que um modelo generativo bem-sucedido deve aprender.

Sinais em Surto: Os dados são caracterizados por longos períodos de inatividade
valores em zero ou próximos de zero, intercalados por surtos (bursts) de alta magnitude
e curta duração, que representam os disparos. Este é um desafio notório para modelos
generativos, que tendem a sofrer colapso de modo aprendendo a gerar apenas o estado de
zero, que é o mais comum [8].

Natureza Multivalorada e Causal: Os dados não são apenas um sinal, mas um sis-
tema. A documentação do dataset revela a existência de múltiplos canais correlacionados,
notavelmente a coluna ton o comando ON/OFF, thrust a força medida e mfr o fluxo de
massa. Um dado sintético realista deve, portanto, honrar essa relação de causa-e-efeito
um comando ton=1 deve ser seguido por um aumento em thrust e mfr.

A documentação do dataset também especifica que os propulsorea SN01 a SN12
são unidades de teste em solo ideais para treinamento, enquanto os SN13 a SN24 são
unidades de voo ideais para teste, fornecendo uma separação natural entre treino e teste.

1 FLEITH, Patrick. Spacecraft Thruster Firing Tests Dataset. Kaggle. Disponível em <https://www.
kaggle.com/datasets/patrickfleith/spacecraft-thruster-firing-tests-dataset/data>. Acesso em: 15 out.
2025.

https://www.kaggle.com/datasets/patrickfleith/spacecraft-thruster-firing-tests-dataset/data
https://www.kaggle.com/datasets/patrickfleith/spacecraft-thruster-firing-tests-dataset/data
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3.2 Pré-processamento

O pré-processamento dos dados foi realizado em duas fases experimentais distintas,
refletindo a evolução da complexidade do modelo.

Fase 1: Abordagem Baseline Unicanal: Na primeira experimentação, uma aborda-
gem simplificada foi adotada para estabelecer um baseline.

Seleção de Coluna: Apenas a coluna ‘thrust‘ foi utilizada.

Concatenação: Todos os arquivos .csv referentes aos propulsores de treino SN01-
SN12 foram lidos e seus dados de thrust concatenados em uma única série temporal
univalorada.

Normalização: A série completa foi normalizada para o intervalo [0, 1].

Janelamento: A série foi segmentada usando uma janela deslizante de tamanho
𝑊 = 1000 timesteps e um passo stride 𝑆 = 200. Isso gerou um conjunto de dados de
treino com 𝑁 janelas de dimensão de 1000 números reais.

Esta abordagem, embora simples, mistura dados de diferentes propulsores e ignora
as correlações entre canais, servindo como base para identificar as limitações de um modelo
ingênuo.

Fase 2: Abordagem Multicanal: Com base nos resultados da Fase 1, foi refinado o
pré-processamento para refletir a verdadeira natureza física dos dados.

Seleção de Colunas: Foram selecionadas as três colunas que definem o evento de
disparo: ton, thrust e mfr.

Concatenação: Os dados dos arquivos de treino SN01-SN12 foram lidos e concate-
nados, preservando os três canais, resultando em uma única série de formato (shape) 𝐿,
onde 𝐿 é o comprimento total.

Normalização: A normalização foi aplicada ao conjunto de dados de 3 colunas.
Uma vantagem desta abordagem é que o ton, sendo binário 0 ou 1, é mapeado para si
mesmo 0 → 0, 1 → 1, enquanto thrust e mfr são normalizados para o intervalo [0, 1]. Neste
caso a coluna ton funciona como causa e os valores de thrust e mfr como consequência.

Janelamento: A janela deslizante com 𝑊 = 1000 foi aplicada sobre os dados
normalizados. Devido a restrições de memória RAM encontradas durante os experimentos,
o passo foi aumentado para 𝑆 = 500 reduzindo a sobreposição e, consequentemente, o
número total de janelas para viabilizar o treinamento.

Esse processo resultou em um conjunto de dados final de treino com 𝑁 ′ janelas
de dimensão 𝑅1000×3, onde cada janela contém 1000 timesteps e 3 canais correlacionados,
prontos para serem utilizados por um modelo convolucional capaz de explorar tanto a
dimensão temporal quanto a correlação entre canais.



35

3.3 Modelagem da Arquitetura

A modelagem também seguiu a progressão de duas fases, comparando um baseline
simples com uma arquitetura avançada.

Modelo 1 Autoencoder Densa MLP: O primeiro modelo foi um Autoencoder Densa,
ou Perceptron Multicamadas MLP.

Arquitetura: O encoder recebia a janela de 1000 pontos, tratando-a como um vetor
único, e a comprimia através de camadas Dense 128, 64 até um espaço latente de 16
dimensões. O decoder espelhava esse processo 16 → 64 → 128 → 1000.

Problemas Encontrados: Como detalhado nos resultados, este modelo falhou em
capturar a dinâmica temporal. Desta maneira o modelo aprendeu apenas a média esta-
tística das janelas, gerando ruído em vez de disparos.

Modelo 2: Autoencoder Convolucional 1D CNN: As métricas resultantes da baseline
de modelo Densa motivou a migração para uma arquitetura de Rede Neural Convolucional
1D CNN.

Localidade: O filtro aprende padrões em pequenas sub-sequências a subida de um
pulso, o que é ideal para dados temporais.

Invariância à Translação: Uma vez que um filtro aprende a detectar um disparo,
ele pode detectá-lo em qualquer lugar da janela seja ele no início, meio ou fim. O modelo
Densa não pode fazer isso.

Função de Perda Híbrida: Como o modelo agora era multicanal, com tipos de
dados mistos, uma função de perda única como MAE ou MSE era inadequada. O canal
ton é um problema de classificação binária 0 ou 1, enquanto os canais thrust e mfr são
problemas de regressão valores contínuos. Aplicar uma perda de regressão a um canal de
classificação levaria a gradientes instáveis e resultados subótimos.

Para resolver isso, uma função de perda híbrida customizada foi desenvolvida,
tratando cada canal com sua métrica apropriada.

Canais de Regressão thrust e ‘mfr‘: Para os canais contínuos, foi utilizado o Erro
Médio Absoluto, ou MAE. Esta métrica é robusta a outliers, o que é ideal para os picos
e ruídos dos disparos do propulsor. A equação calcula o erro médio da seguinte forma:

𝐿𝑀𝐴𝐸 = 1
𝑊

𝑊∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖| (3.1)

Nesta fórmula, 𝐿𝑀𝐴𝐸 é o valor final da perda. O termo 1
𝑊

∑︀𝑊
𝑖=1 representa a média sobre

todos os 𝑊 passos de tempo da janela, onde 𝑊 é 1000. A expressão |𝑦𝑖 − 𝑦𝑖| calcula a
distância absoluta, ou seja, sem sinal negativo, entre o valor real 𝑦𝑖 e o valor previsto 𝑦𝑖

em cada passo de tempo.



36

Canal de Classificação ton: Para o canal binário, foi utilizada a Entropia Cruzada
Binária, ou BCE, que é a perda padrão para problemas de classificação zero ou um.
Ela penaliza o modelo de forma logarítmica quando ele prevê a classe errada. A fórmula
conceitual é:

𝐿𝐵𝐶𝐸 = − 1
𝑊

𝑊∑︁
𝑖=1

[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)] (3.2)

Aqui, 𝐿𝐵𝐶𝐸 é o erro de classificação. O 𝑦𝑖 é o rótulo real, zero ou um, e 𝑝𝑖 é a
probabilidade prevista pela rede, um valor entre zero e um. A equação funciona como
uma chave lógica: se o valor real 𝑦𝑖 é 1, a fórmula se simplifica para − log(𝑝𝑖), penalizando
previsões distantes de 1. Se o valor real 𝑦𝑖 é 0, a fórmula se torna − log(1 − 𝑝𝑖), penali-
zando previsões próximas de 1. O logaritmo garante que previsões confiantemente erradas
recebam uma penalidade muito alta, guiando o modelo rapidamente para a convergência.
Na implementação, a versão com logits, que opera sobre as saídas lineares da rede, é usada
por sua maior estabilidade numérica.

Perda Total: A perda total 𝐿𝑡𝑜𝑡𝑎𝑙 é uma soma ponderada das perdas de cada canal:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑡𝑜𝑛 · 𝐿𝐵𝐶𝐸 + 𝑤𝑡ℎ𝑟𝑢𝑠𝑡 · 𝐿𝑀𝐴𝐸_𝑡 + 𝑤𝑚𝑓𝑟 · 𝐿𝑀𝐴𝐸_𝑚 (3.3)

As perdas de BCE e MAE operam em escalas numéricas diferentes; um erro de
classificação quantitativo de BCE pode ser muito maior que um erro de regressão qua-
litativo de MAE, especialmente no início do treinamento. Se não fossem ponderadas, o
otimizador poderia focar apenas em corrigir o erro do canal ton, efetivamente esmagando
e ignorando os erros de forma do thrust e mfr. O peso 𝑤𝑡𝑜𝑛 = 1.5 foi determinado para
balancear a contribuição de cada perda, assegurando que o modelo aprenda a sequência
de comando ton e, simultaneamente, dê a devida importância à replicação das formas
físicas correlacionadas nos canais thrust e mfr.

Tabela 1 – Comparação das arquiteturas de Autoencoder implementadas.

Componente Modelo 1 (MLP) Modelo 2 (CNN 1D)
Entrada 𝑅1000 (unicanal) 𝑅1000×3 (multicanal)
Encoder Dense: 1000→128→64→16 Conv1D (32, 64) + MaxPoo-

ling
Espaço Latente 16 dimensões Comprimido
Decoder Dense: 16→64→128→1000 UpSampling + Conv1D
Função de Perda MAE Híbrida (BCE + MAE)
Viés Indutivo Nenhum Localidade + Invariância
Canais 1 (thrust) 3 (ton, thrust, mfr)

A Tabela 1 apresenta uma visão comparativa das duas arquiteturas implemen-
tadas, destacando as diferenças fundamentais que mostram a superioridade esperada do
modelo CNN para a tarefa de geração de séries temporais.
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3.4 Validação e Avaliação

Esta seção detalha as métricas escolhidas para o protocolo de avaliação, com foco
em justificar por que as métricas tradicionais MAE/MSE foram descartadas em favor de
um conjunto mais robusto Wasserstein, DTW, TSTR, t-SNE.

A Insuficiência do MAE e MSE: O Erro Médio Absoluto MAE e o Erro Quadrático
Médio MSE são métricas padrão para problemas de regressão. Em um Autoencoder, elas
medem o erro de reconstrução, ou seja, a diferença ponto-a-ponto entre a entrada 𝑋 e a
saída reconstruída 𝑋̂.

Razões de falha na geração: Um Autoencoder pode atingir um MSE de reconstrução
próximo de zero o que acaba provando que é um bom copiador, mas ainda ser um péssimo
gerador. Isso ocorre por dois motivos:

Colapso de Modo: O modelo pode aprender a reconstruir perfeitamente, mas seu
espaço latente pode ser não-contínuo. Ao tentar amostrar um novo ponto 𝑍 do espaço
latente, o decodificador pode gerar dados sem sentido.

Foco no Ponto, Não na Forma: Como o MSE/MAE medem o erro ponto-a-ponto,
eles são extremamente sensíveis a desalinhamentos temporais. Se um disparo sintético
𝑋𝑓𝑎𝑘𝑒 tiver a forma perfeita, mas ocorrer 10 timesteps atrasado em relação a um disparo
real 𝑋𝑟𝑒𝑎𝑙, o MSE registrará um erro massivo, julgando-o incorretamente como uma falha.

Por esta razão, métricas que avaliam a distribuição e a forma são necessárias.

Protocolo de Avaliação Proposto:

Distância de Wasserstein: Foi escolhida para comparar as distribuições estatísticas
marginais de 𝑋𝑟𝑒𝑎𝑙 e 𝑋𝑓𝑎𝑘𝑒.A Wasserstein mede o custo para mover uma distribuição para
se igualar à outra, sendo robusta mesmo quando as distribuições não se sobrepõem [11].
Um valor baixo indica que os histogramas dos dados são similares.

Dynamic Time Warping DTW: Foi escolhido para medir a similaridade de forma.
O DTW é um algoritmo que encontra o alinhamento não-linear ideal entre duas séries
temporais, calculando a distância de forma independentemente de desalinhamentos [10].

t-SNE (t-distributed Stochastic Neighbor Embedding): Foi escolhida como a métrica
de avaliação visual da estrutura. O t-SNE é um algoritmo de redução de dimensionalidade
que projeta as janelas de alta dimensão 𝑅1000×3 para um espaço 2D, preservando as
relações de vizinhança [12]. O objetivo é visualizar se o cluster de dados sintéticos laranja
se sobrepõe ou vive dentro do cluster de dados reais azul, indicando que o modelo aprendeu
a estrutura correta.

TSTR Train-on-Synthetic, Test-on-Real: Foi escolhida como a métrica de utilidade.
Esta é a validação mais pragmática analisam se os dados sintéticos são bons o suficiente
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para substituir os reais em uma tarefa de ML. Ao treinar um modelo de regressão nos
dados sintéticos e testá-lo nos reais, medimos diretamente sua utilidade.
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4 EXPERIMENTOS E RESULTADOS

Neste capítulo, são apresentados e discutidos os resultados comparativos dos dois
experimentos definidos na metodologia: o baseline Autoencoder Densa Unicanal e o Au-
toencoder 1D-CNN Multicanal.

4.1 Resultados e Análise Comparativa

A experimentação foi conduzida em duas fases sequenciais. As métricas da primeira
fase, diagnosticadas pelo protocolo de avaliação, forneceram a motivação direta para a
segunda.

Tabela 2 – Hiperparâmetros e configurações de treinamento dos modelos.

Hiperparâmetro Modelo MLP Modelo CNN
Taxa de Aprendizado 1e-5 1e-5
Número de Épocas 47 48
Função de Perda MAE Híbrida (BCE+MAE)
Otimizador Adam Adam

A Tabela 2 sumariza as configurações de treinamento utilizadas em ambos os
experimentos, garantindo comparabilidade entre os modelos.

Experimento 1: Baseline com Autoencoder Densa. Inicialmente, um Autoencoder
Densa MLP, unicanal apenas ‘thrust‘, foi treinado. Esta arquitetura foi escolhida como
um baseline por sua simplicidade.

Resultados do Modelo Densa: Após estabilização do treino usando uma função de
perca com Erro Absoluto Médio (MAE) e taxa de aprendizado de 1𝑒−5, o modelo treinou
por 47 épocas e produziu os resultados quantitativos listados na Tabela 3. Embora o TSTR
Ratio de 0.2534 parecesse promissor, as outras métricas DTW e Wasserstein apresentaram
valores altos, indicando uma falha fundamental.

Diagnóstico da Falha: A falha do modelo baseline foi confirmada de forma inequí-
voca pelas métricas qualitativas e visuais, que expuseram a natureza do falso positivo do
TSTR.

Dificuldade na Geração de Eventos: Como demonstrado na Figura 3, o modelo
falhou em gerar disparos. As amostras sintéticas em verde degeneraram para ruído gaus-
siano centrado na média estatística da janela, sem nenhuma semelhança com a dinâmica
dos dados reais.

Falha na Distribuição: A Figura 4 mostra que o modelo ignorou o modo esta-
tístico mais importante dos dados: o pico massivo em zero propulsor desligado. Em vez
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disso, gerou uma distribuição normal simples, resultando na alta Distância de Wasserstein
0.2647.

Falha Estrutural: O gráfico t-SNE na Figura 5 visualiza essa falha. Os dados reais
azul e sintéticos laranja formam dois clusters completamente separados, provando que os
dados gerados não vivem no mesmo espaço estrutural dos dados reais.

Analise da Falha: A arquitetura Densa da maneira em que foi implementada foi
estruturalmente incapaz de aprender padrões temporais. Ao achatar a janela de 1000
pontos em um vetor, ela destrói a informação sequencial. O TSTR Ratio de 0.25 foi um
artefato que simplesmente provou que prever a média era uma estratégia de previsão
superior a tentar modelar o ruído dos dados reais.

Figura 3 – Amostra visual do Real, Reconstruído, Sintético do modelo Densa MLP.

Linha Azul (Real): Este é o dado original. É um sinal complexo e ruidoso, mas
possui uma forma ou evento muito claro: uma queda abrupta e um vale (prato) entre os
timesteps 500 e 650, antes de subir novamente.

Linha Laranja (Reconstruído): Esta linha mostra a tentativa do autoencoder de
recriar o sinal azul após comprimi-lo e descomprimí-lo. É um fracasso. O modelo ignora
completamente o evento principal (o vale) e produz apenas um ruído que segue a média
geral do sinal.

Linha Verde (Sintético - Gerado): Esta é a linha mais importante. Ela mostra o
que o modelo realmente aprendeu sobre a estrutura dos dados. Quando pedimos a ele para
gerar uma nova amostra ‘do zero‘ (a partir do espaço latente), ele não produz nenhum
evento, nenhum vale, nenhuma forma. Ele gera apenas ruído estatístico, oscilando em
torno de uma média.

Este gráfico expõe a falha da implementação do modelo Densa:

Destruição do Tempo: Um modelo Densa (MLP) não entende o tempo. Para ele,
o timestep 5 não é antes do timestep 6. Ele achata a janela de 1000 pontos em um único
vetor e tenta aprender correlações.

Aprendizado da Média, não da Forma: Como resultado, o modelo Densa não apren-
deu a forma de um disparo ou de um vale. Ele aprendeu apenas as propriedades estatísticas
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médias da janela por exemplo: ‘os valores geralmente ficam entre 0.5 e 1.5‘.

A Prova da Falha: A linha verde (Sintético) é a maior prova. Como o modelo não
aprendeu nenhuma estrutura temporal, ao gerar um novo dado, ele apenas produz ruído
que satisfaz as propriedades estatísticas médias que ele aprendeu.

Figura 4 – Histograma Wasserstein do modelo Denso MLP.

O pico azul, Real, que é extremamente alto e fino em 𝑥 = 0, representa o estado
de repouso do propulsor. Ele nos diz que a vasta maioria dos seus dados reais tem o valor
exato de zero, indicando que o propulsor está desligado. Esta é a característica dominante
da distribuição.

O pico laranja, Sintético, mostra o que o modelo gerou. Fica claro que o modelo
falhou completamente em replicar este pico em zero. Em vez de gerar o valor zero, ele
está gerando ruído centrado próximo de zero, uma distribuição normal que não existe nos
dados reais.

Em suma, o modelo não aprendeu que os dados têm dois estados, um de repouso
em zero e um de disparo com valores positivos. Ele achatou esses dois estados em uma
única distribuição média ruidosa. Esta discrepância visual, a ausência do pico em zero,
é exatamente o que a Distância de Wasserstein quantificou com um valor alto. O gráfico
presente na Figura 3 e o número contam a mesma história: o modelo falhou em aprender
a distribuição correta.

Figura 5 – t-SNE do modelo Denso MLP.

Este gráfico prova que a estrutura dos dados sintéticos é muito diferente da estru-
tura dos dados reais. O modelo não aprendeu a geometria ou o mapa dos dados originais.
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Ele está gerando dados (o ruído que é mostrado na Figura 3) que são tão diferentes dos
dados reais que o t-SNE os agrupa em um continente quase que completamente separado.

Experimento 2: Autoencoder 1D-CNN Multicanal Com base nas dificuldades
encontradas do modelo Densa, a arquitetura 1D-CNN Multicanal com perda híbrida foi
implementada. Este modelo treinou estavelmente por 48 épocas, devido ao grande volume
de dados e demonstrou sucesso em todas as métricas de avaliação.

Tabela 3 – Comparação de Métricas: Modelo Densa vs. 1D-CNN Multicanal.

Métrica Baseline Densa Unicanal 1D-CNN Multicanal
Dist. Wasserstein 0.2647 0.0447
DTW Médio 14.22 7.3088
TSTR Ratio 0.2534 0.0192

O modelo CNN se mostrou superior ao Densa e resolveu quase todas as falhas
identificadas no baseline:

Figura 6: Em forte contraste com o modelo Densa, o 1D-CNN aprendeu a relação
de causa e efeito. O dado sintético verde mostra claramente que os disparos de thrust e
mfr são gerados em resposta e perfeitamente alinhados com os pulsos no canal ton. Isso
prova que o modelo não está apenas gerando formas, mas aprendendo a física subjacente
do sistema.

DTW: O DTW médio caiu pela metade de 14.22 para 7.30. Este resultado quan-
tifica o que a figura 6 mostra: a arquitetura 1D-CNN, por seu viés indutivo de localidade,
foi capaz de aprender e replicar a forma dos eventos de disparo.

Distribuição de Wasserstein: A distância caiu para 0.044, uma redução de 83% em
relação ao modelo Densa. O gráfico de histograma Figura 7 confirma que as distribuições
são quase idênticas, indicando que o modelo replicou corretamente tanto o estado de
repouso pico em zero quanto a distribuição dos valores de disparo.

TSTR: O ratio de 0.0192 1.9% é um resultado bom. O MSE do baseline treinado
no real foi de 5890 indicando que os dados reais são ruidosos e difíceis de prever, enquanto
o modelo treinado no sintético obteve um MSE de apenas 112.

Tabela 4 – Análise detalhada do experimento TSTR (Train-on-Synthetic, Test-on-Real).

Configuração MSE (Teste Real) Interpretação
TRTR (Baseline) 5890 Dados reais são ruidosos e

difíceis de prever
TSTR (CNN Sintético) 112 Dados sintéticos são limpos

e bem estruturados
TSTR Ratio 0.0192 (1.9%)
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Conforme demonstrado na Tabela 4, o MSE do baseline (treinado no real) foi de
5890 (indicando que os dados reais são ruidosos e difíceis de prever), enquanto o modelo
treinado no sintético obteve um MSE de apenas 112.

Figura 6 – Amostras visuais do Real, Reconstruído, Sintético do modelo 1D-CNN Multi-
canal.

Análise da Reconstrução (Linha Laranja):

Canal ton (Canal da Esquerda): A linha ‘Reconstruído‘ (laranja) está perfeita-
mente sobreposta à linha Real (azul). O modelo aprendeu a copiar o sinal de comando
binário com 100% de precisão.

Canais thrust e mfr (Canais do Centro e Direita): A linha ‘Reconstruído‘ (laranja)
age como uma versão suavizada e limpa da linha Real (azul). O modelo capturou a forma
principal do disparo (o burst) e filtrou com sucesso o ruído de alta frequência.

Análise da Geração (Linha Verde):

Canal ton (Canal da Esquerda): A linha ‘Sintético‘ (Gerado) (verde) não é ruído.
Ela é uma sequência de pulsos binários limpos e nítidos, assim como os dados reais. O
modelo aprendeu o que é um "comando".

Canais thrust e mfr (Canais do Centro e Direita): A linha Sintético (verde) gera
surtos limpos e com a forma correta. Eles se parecem com as linhas reconstruídas (laranja),
mostrando que o modelo aprendeu a forma ideal de um disparo, porém sem o ruído.

Figura 7 – Histograma Wasserstein do canal thrust no modelo CNN.

O Pico em Zero: Na Figura 7, a característica mais importante que é observada
dos dados reais (linha azul) é o pico imenso e agudo em 𝑥 = 0, que representa o propulsor
desligado. O modelo sintético (linha laranja) replicou este pico perfeitamente em capturar



44

a estrutura bimodal, o pico em zero e a cauda dos disparos. Mostrando que ele aprendeu
que o estado mais comum do sistema é desligado.

A Cauda: À direita do pico zero, há uma pequena cauda de valores positivos (entre
0 e 1.5). Esta é a distribuição dos valores dos disparos quando o propulsor está ligado. O
modelo sintético (linha laranja) também sobrepõe e replica a forma desta cauda com alta
fidelidade.

Figura 8 – t-SNE do canal ‘thrust‘ no modelo CNN.

A maior parte da Figura 8, no centro e à direita, mostra uma boa sobreposição
entre os pontos azuis (Real) e laranjas (Sintético). Isso significa que, para a maioria dos
tipos de disparos, o modelo 1D-CNN aprendeu a estrutura corretamente e está gerando
amostras sintéticas que são estruturalmente muito similares às reais. É por isso que as
métricas de DTW e Wasserstein foram melhores como mostrado na Tabela 3.
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5 CONCLUSÃO

Este trabalho se propôs a desenvolver e validar um pipeline para a geração de
dados sintéticos de séries temporais que fossem quantitativamente úteis. O desafio central
era superar os artifícios comuns da geração de dados temporais, como o colapso de modo
e a falha em capturar dinâmicas complexas, utilizando arquiteturas de Autoencoder.

A metodologia progrediu de um baseline simples para uma solução mais completa
e eficaz. O experimento inicial, utilizando um Autoencoder Densa unicanal, provou-se ina-
dequado. Conforme diagnosticado pelo protocolo de avaliação, a implementação utilizada
da arquitetura Densa falhou em aprender a forma dos disparos alto DTW de 14.22 e a
distribuição dos dados alto Wasserstein de 0.2647, gerando apenas ruído. Esta métrica foi
importante, pois serviu como a principal motivação para a arquitetura proposta.

A solução foi um Autoencoder Convolucional 1D CNN multivalorada, projetado
para resolver as deficiências do baseline. O viés indutivo da CNN permitiu o aprendizado
de padrões locais a forma do disparo, enquanto a abordagem multivalorada usando ton,
thrust, mfr permitiu que o modelo aprendesse a relação física de causa e efeito subjacente.
A introdução de uma função de perda híbrida BCE para ton, MAE para thrust/mfr foi
fundamental para otimizar corretamente os diferentes tipos de dados.

A introdução da função de perda híbrida foi uma decisão metodológica que se
provou fundamental para o sucesso do modelo 1D-CNN. O modelo enfrentou o desafio
de otimizar duas tarefas distintas simultaneamente: a classificação binária do canal ton
e a regressão contínua dos canais thrust e mfr. A aplicação de uma perda de regressão
singular, como o MAE, para todos os canais, teria falhado em penalizar previsões proba-
bilisticamente erradas para o ton. Por outro lado, a Entropia Cruzada Binária, ou BCE,
e o MAE operam em escalas numéricas drasticamente diferentes. O erro logarítmico da
BCE, sendo quantitativo, teria esmagado o erro linear do MAE, qualitativo, durante o
treinamento. Isso faria o otimizador focar apenas em acertar o comando ton, ignorando a
forma do thrust. A soma ponderada foi a solução, balanceando a contribuição de cada erro
e forçando o modelo a aprender ambas as tarefas simultaneamente: acertar o comando de
causa e replicar a forma do efeito físico.

Os resultados da arquitetura 1D-CNN multivalorada validaram a abordagem de
forma conclusiva. O sucesso do modelo foi holístico: ele aprendeu a replicar a distribuição
estatística, atingindo uma Distância de Wasserstein de 0.0447, e a forma temporal dos
disparos, reduzindo o erro de DTW pela metade para 7.3088. A avaliação visual confirmou
que o modelo aprendeu a correlação de causa e efeito entre os canais. A métrica de utilidade
TSTR, com um ratio de 0.0192, serviu como uma validação secundária, demonstrando
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que o sinal gerado era limpo e livre do ruído de alta frequência presente nos dados reais,
cujo MSE foi de 5890 contra 112 do modelo sintético.

Diante desta análise, pode-se afirmar que os objetivos deste trabalho foram em
sua maioria atingidos. A expressão ‘em sua maioria‘ é utilizada pois, embora as métricas
quantitativas de forma DTW e distribuição Wasserstein tenham sido um sucesso, a métrica
de análise estrutural t-SNE revela limitações. A visualização t-SNE mostrou que a nuvem
de dados sintéticos sobrepõe-se corretamente à nuvem principal de dados reais. Contudo, a
análise também expôs clusters isolados: uma região de dados reais que o modelo sintético
falhou em cobrir, configurando um ponto cego, e uma região de dados sintéticos que não
possui correspondência real, caracterizando a geração de artefatos.

Apesar destas limitações estruturais, foi desenvolvido um pipeline validado que
quantifica a qualidade dos dados. O trabalho demonstra empiricamente a superioridade
de arquiteturas 1D-CNN sobre MLPs para a síntese de séries temporais e valida o uso de
Autoencoders como ferramentas eficazes de filtragem de ruído. Soma-se a estas limitações
o fato de que o processo de treinamento, ao concatenar todos os propulsores, gera um
modelo médio, e não um modelo específico para cada tipo de propulsor.

O presente trabalho pode ser aplicado principalmente em áreas de ciência de dados
e inteligência artificial em conjuntos de dados como dados incompletos, dados inválidos,
quantia baixa de dados e para validação de dados que não possuam validadores reais.

Para aprimorar e estender a aplicabilidade do modelo generativo desenvolvido,
sugerem-se dois caminhos principais de pesquisa, focados em aumentar o controle sobre a
síntese de dados e estabelecer um comparativo com arquiteturas generativas competitivas.

O primeiro caminho é a implementação de um Autoencoder Condicional (CAE).
Atualmente, o modelo gera dados aleatórios a partir de um espaço latente não-condicional.
O próximo passo seria adotar uma arquitetura de Autoencoder Condicional, utilizando
metadados exógenos do sistema, como o Número de Série (SN) do propulsor, o modo de
teste ou as condições de pressão, como condições de entrada para o decodificador. Tal
condicionamento, análogo ao princípio das GANs Condicionais [35], permitiria a geração
de dados sob demanda, possibilitando, por exemplo, a síntese de um disparo específico do
SN05 a 10 bar de pressão.

O segundo caminho foca na Comparação com Arquiteturas Generativas Adver-
sariais (GANs). Embora o Autoencoder tenha sido selecionado pela sua estabilidade de
treinamento, evitando problemas como o colapso de modo [1], é fundamental quantifi-
car seu desempenho em relação a modelos Generativos Adversariais de estado-da-arte
para séries temporais. Sugere-se aplicar o mesmo protocolo de avaliação robusto já esta-
belecido, comparando a fidelidade e utilidade do Autoencoder com arquiteturas como a
Time-series Generative Adversarial Networks (TimeGAN) [2]. Essa comparação deve ser
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focada nas métricas de utilidade TSTR (Train-on-Synthetic, Test-on-Real) e de similari-
dade morfológica DTW (Dynamic Time Warping) [10] para garantir uma análise objetiva
da qualidade dos dados gerados.
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