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CNN. 62 p. Trabalho de Conclusão de Curso – Versão Preliminar (Bacharelado em Ci-
ência da Computação) – Universidade Estadual do Paraná, Apucarana–PR, 2025.

RESUMO

A inspeção de qualidade de maçãs é um processo fundamental para atender às normas
regulatórias brasileiras (IN n.º 5/2006), porém a análise manual apresenta limitações de
subjetividade e escalabilidade. Este trabalho avalia o desempenho e a utilidade prática de
uma solução automatizada baseada em Visão Computacional, utilizando a arquitetura de
rede neural Mask R-CNN para a segmentação de instâncias de danos físicos nas maçãs.
A metodologia fundamentou-se na técnica de Transfer Learning com backbone ResNet-
101, utilizando um dataset inicial de 300 imagens que foi ampliado para 1.800 amostras
através de Data Augmentation. Foram realizados três experimentos comparativos, trei-
namento com congelamento de camadas (freezing), descongelamento total (unfreezing) e
uso de dataset expandido. Os resultados demonstraram que as estratégias iniciais apre-
sentaram dificuldades na tarefa de segmentação, refletidas na divergência da função de
perda de validação. Ressalta-se que a desproporção entre o tamanho da imagem e o dano
físico faz com que pequenas variações na máscara gerem penalizações elevadas no erro.
Em contrapartida, o modelo treinado com o conjunto de dados expandido apresentou es-
tabilidade e generalização superior. Conclui-se que a aplicação da Mask R-CNN, aliada ao
aumento da variabilidade de dados, é uma abordagem eficaz, comprovando sua utilidade
técnica para a mensuração precisa e segmentação de danos físicos em maçãs.

Palavras-chave: Visão Computacional. Mask R-CNN. Segmentação de instâncias.





. Detection and Segmentation of Physical Damage in Apples Using Mask R-
CNN. 62 p. Final Project – Draft Version (Bachelor of Science in Computer Science) –
State University of Paraná, Apucarana–PR, 2025.

ABSTRACT

Quality inspection of apples is a fundamental process for complying with Brazilian regu-
latory standards (IN No. 5/2006), however, manual analysis presents limitations in terms
of subjectivity and scalability. This work evaluates the performance and practical util-
ity of an automated solution based on Computer Vision, using the Mask R-CNN neural
network architecture for segmenting instances of physical damage in apples. The method-
ology was based on the Transfer Learning technique with a ResNet-101 backbone, using
an initial dataset of 300 images that was expanded to 1,800 samples through Data Aug-
mentation. Three comparative experiments were performed: training with layer freezing,
total unfreezing, and use of an expanded dataset. The results demonstrated that the ini-
tial strategies presented difficulties in the segmentation task, reflected in the divergence
of the validation loss function. It is noteworthy that the disproportion between the image
size and the physical damage causes small variations in the mask to generate high error
penalties. In contrast, the model trained with the expanded dataset showed superior sta-
bility and generalization. It is concluded that the application of Mask R-CNN, combined
with increased data variability, is an effective approach, proving its technical utility for
the precise measurement and segmentation of physical damage in apples.

Keywords: Computer Vision. Mask R-CNN. Instance Segmentation.
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1 INTRODUÇÃO

A cultura da maçã movimenta mais de um bilhão de reais por ano no Brasil e gera
milhares de postos de trabalho nas regiões Sul e Sudeste [1]. Para garantir a qualidade do
fruto que chega ao consumidor, o Ministério da Agricultura, Pecuária e Abastecimento
editou a Instrução Normativa n.º 5/2006, estabelecendo limites de cor, calibre e tolerância
a defeitos para as categorias Extra, 1, 2 e 3 [2].

Para determinar a qualidade da fruta, são avaliados diversos aspectos, como colo-
ração, características da epiderme (lisura, brilho, manchas) e lesões físicas. Muitas dessas
características, especialmente as irregularidades na casca, dependem exclusivamente de
avaliação visual.

Essa avaliação é geralmente realizada manualmente em processos de inspeção de
qualidade, que dependem de avaliadores treinados para cumprir as diretrizes da instrução
normativa n.º 5 [3]. Entretanto, a rapidez do processo e a fadiga visual geram erros e
falta de padronização na classificação. Por isso, torna-se necessário apoiar ou substituir o
trabalho manual por sistemas automatizados mais confiáveis.

Visto que a classificação regida pela normativa n.º 5/2006 [2] avalia quatro cate-
gorias de atributos relacionados a danos físicos, especificamente lesões cicatrizadas (leves
e graves), danos mecânicos por impacto e lesões abertas, e considerando que a gravidade
desses defeitos depende da mensuração da área ocupada na superfície da fruta (em mi-
límetros ou centímetros quadrados), torna-se viável a automação dessa análise por meio
de processamento computacional de imagens.

Nesse contexto, os avanços recentes em Visão Computacional, especialmente nas
Redes Neurais Convolucionais (CNN), sistemas matemáticos capazes de extrair automa-
ticamente padrões de cor e textura por meio de operações de convolução [4], oferecem
uma alternativa promissora para a modernização da inspeção de frutas [5].

A aplicação desses modelos apresenta-se como uma solução eficiente para o con-
trole de qualidade de maçãs. Considerando que os danos físicos na epiderme depreciam o
produto final e possuem critérios de desclassificação baseados na extensão da área afetada,
este trabalho utiliza a arquitetura Mask R-CNN. O objetivo central é avaliar o desempe-
nho técnico e a utilidade prática do modelo na segmentação de instâncias dessas avarias,
investigando sua capacidade de mensurar com precisão a extensão do dano.

Diferentemente de arquiteturas focadas exclusivamente na detecção de objetos
(bounding boxes), o Mask R-CNN realiza a segmentação de instâncias, gerando máscaras
que delimitam a região de interesse em nível de pixel. Tal capacidade é o que define a
utilidade da ferramenta para a inspeção de maçãs, pois permite não apenas localizar, mas
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também delimitar com exatidão a área de múltiplas avarias, fornecendo as métricas de
área necessárias para mitigar a subjetividade humana.

Assim, a pesquisa visa avaliar o desempenho e a utilidade da arquitetura na seg-
mentação de danos físicos em maçãs, investigando a capacidade do modelo em delinear
com precisão a extensão das avarias. O trabalho justifica-se pelo potencial de moderniza-
ção do setor, introduzindo uma abordagem automatizada capaz de mitigar a subjetividade
humana e auxiliar na padronização do controle de qualidade de maçãs.

O trabalho começa apresentando a base teórica, explicando os conceitos de Redes
Neurais Artificiais (RNA), desde a aplicação inicial com o Perceptron até a evolução para
as Redes Neurais Convolucionais (CNNs). Logo depois, o texto explica o papel da “espinha
dorsal” (backbone) na extração das características da imagem e detalha por que escolheu
a arquitetura residual ResNet-101 para este estudo.

Ainda na parte teórica, o estudo destaca como a arquitetura Mask R-CNN evoluiu
ao longo do tempo. O texto descreve os modelos que vieram antes (R-CNN, Fast R-CNN
e Faster R-CNN) e mostra as melhorias que cada um trouxe até chegar na capacidade
atual de fazer a segmentação de instâncias.

Na seção de trabalhos correlatos, a pesquisa analisa outros estudos que usaram a
família R-CNN, principalmente o Mask R-CNN, na agricultura. Foram usadas referências
sobre plantações de alface, quinoa e detecção de danos em maçãs para comparar resultados
e definir as estratégias de melhoria do modelo.

O método de pesquisa define como as imagens foram coletadas e como o conjunto
de dados (dataset) foi montado, além das configurações usadas no treinamento. Para
medir os resultados, foram escolhidas métricas como a Average Precision (AP), F1-Score
e Intersection over Union (IoU), além de acompanhar a função de perda (Loss) do próprio
Mask R-CNN.

Nos experimentos, o trabalho detalha as três abordagens usadas para treinar a
rede: a Head (treinando apenas as camadas de topo), a All (ajuste fino completo da rede)
e a Expanded (usando técnicas para aumentar o número de imagens).

Por fim, nos resultados e conclusão, o texto avalia como o modelo se saiu em cada
cenário. A conclusão é que, apesar de todas as estratégias mostrarem resultados interes-
santes, a abordagem do experimento Expanded teve o melhor desempenho, conseguindo
generalizar melhor e ter mais precisão na segmentação.
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2 FUNDAMENTAÇÃO TEÓRICA

2.1 Técnicas

2.1.1 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNA) consistem em modelos computacionais inspi-
rados na estrutura biológica e no funcionamento do cérebro humano, caracterizando-se
por um conjunto de unidades de processamento simples (neurônios) interconectadas.

A unidade fundamental da RNA é o Neurônio Artificial, projetado para mimetizar
a capacidade de aprendizado biológico. Um marco inicial dessa abordagem foi o modelo
Perceptron, proposto por Rosenblatt [6]. Matematicamente, essa estrutura é composta por
um vetor de entradas, pesos (coeficientes de ponderação), uma função de transferência
(ou limiar) e uma função de ativação que determina a resposta de saída do neurônio.
Podemos ver essa estrutura do Perceptron, composto por múltiplas entradas na Figura 1
[6].

Figura 1 – Estrutura do Perceptron de Rosenblatt.

A camada de entrada recebe os dados brutos a serem processados pelo modelo.
Cada entrada é associada a um peso, que atua como um coeficiente de ponderação. O
ajuste desses pesos determina a relevância de cada dado de entrada, sendo esta a forma
como a rede armazena o conhecimento extraído durante o treinamento.

Estes componentes, juntamente com a função de transferência (ou junção), permi-
tem calcular o resultado da soma ponderada das entradas. Esse valor será posteriormente
processado pela função de ativação, definindo a saída final da rede.

No Perceptron de Rosenblatt, por exemplo, utiliza-se a função degrau binária, a
qual produz apenas dois valores de saída: 0 ou 1 (ou –1 e 1, em algumas variações). Essa
resposta depende da comparação entre a soma ponderada e um valor fixo denominado
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limiar (threshold): se a soma for maior ou igual ao limiar, a saída assume o valor 1; caso
contrário, assume o valor 0.

As redes neurais são utilizadas para resolver problemas de tomada de decisão
mais complexos, como a classificação, determinando se um conjunto de dados de entrada
pertence ou não a uma classe. Entretanto, em sua forma inicial, o Perceptron apresentava
limitações em tarefas que envolviam classificações não lineares, como demonstrado por
Minsky [7].

Essas restrições foram superadas com o surgimento do Perceptron Multicamadas
(MLP). Diferentemente do modelo simples, o MLP introduz uma ou mais camadas ocultas
entre a entrada e a saída. Nessa estrutura, todas as saídas de uma camada se conectam com
cada entrada da camada posterior, formando o que é conhecido como camadas totalmente
conectadas (fully connected). Os sinais são propagados camada a camada, permitindo que
a rede modele relações não lineares complexas que o Perceptron original não conseguia
resolver.

Apesar de as MLPs superarem a limitação linear, elas apresentam sérias restrições
ao processar dados de alta dimensionalidade, como imagens. Em arquiteturas totalmente
conectadas, o número de parâmetros cresce exponencialmente com o aumento da pro-
fundidade e do tamanho da entrada, resultando em um custo computacional proibitivo e
dificultando a generalização do modelo [8, 9].

2.1.2 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (CNN ou Convolutional Neural Networks) são
uma classe de RNAs utilizadas principalmente para o processamento de imagens, devido à
sua capacidade de lidar com dados em formato de grade (matrizes). Essas redes destacam-
se por utilizar operações de convolução para a extração de atributos, gerando os chamados
mapas de características (Feature Maps) [4].

O processo de convolução resulta da aplicação de um filtro (ou kernel), que desliza
sobre a matriz de entrada. Para cada posicionamento do filtro, é realizada a multiplicação
elemento a elemento entre os pesos do filtro e a região correspondente da entrada, seguida
da soma desses valores. O resultado de cada operação é armazenado em uma matriz
resultante, denominada mapa de características (Feature Map), conforme apresentado na
Figura 2 onde podemos ver um exemplo de convolução com filtro (Kernel) 3x3 [10].
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Figura 2 – Convolução com filtro.

As camadas que realizam esse processo são chamadas de camadas de convolução,
principais responsáveis pela extração de características dos dados. Além da convolução,
as CNNs também realizam outro processo importante para a extração das características
chamado de pooling, que é o processo para abstrair os dados do mapa de características
gerado pelas camadas de convolução.
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Esse processo reduz a dimensão das entradas e resume os resultados do mapa de
características. Um exemplo comum é a técnica de max pooling, que seleciona o maior
valor resultante de uma região específica do mapa e gera uma nova saída de dimensão
menor. Essa nova matriz é formada apenas pelos valores máximos de cada região, como
demonstrado na Figura 3, onde podemos ver um exemplo de redução de dimensionalidade
utilizando max pooling e average pooling.

Figura 3 – Mapa de características.

Por fim, após a geração do mapa de características com o pooling aplicado, a
matriz resultante é transformada em um vetor de uma única dimensão. Esse novo vetor
é passado como entrada para as camadas de classificação [11], que geralmente utilizam
camadas totalmente conectadas. Nessas camadas, a estrutura utilizada é igual às MLPs,
onde cada entrada tem um respectivo peso e a saída de cada neurônio se conecta com a
entrada de cada neurônio da camada posterior.

2.1.3 Arquiteturas Profundas e Resnet

Em arquiteturas modernas de detecção e segmentação de objetos, o processo de
extração de características é delegado a uma CNN base, denominada backbone (espinha
dorsal). O papel do backbone é transformar a imagem de entrada bruta em um conjunto
rico de mapas de características (feature maps), que capturam desde detalhes de baixo
nível (como bordas e cores) até estruturas semânticas complexas. A eficiência da detecção
de danos em maçãs depende diretamente da capacidade do backbone de distinguir texturas
sutis na epiderme da fruta.

Para aumentar a capacidade de representação de uma rede neural, a estratégia
intuitiva é aumentar sua profundidade (número de camadas). Entretanto, He et al.[12]
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demonstraram que o treinamento de redes excessivamente profundas enfrenta o problema
da degradação: à medida que a profundidade aumenta, a precisão satura e começa a
degradar rapidamente. Isso ocorre devido ao problema do desvanecimento do gradiente
(vanishing gradient), onde o sinal de erro utilizado para ajustar os pesos torna-se extre-
mamente pequeno ao propagar-se para as primeiras camadas, impedindo o aprendizado
eficaz.

Para solucionar a degradação em redes profundas, He et al. [12] introduziram
a arquitetura ResNet (Residual Network). A inovação central consiste na utilização de
blocos residuais com conexões de atalho (skip connections). Diferentemente das redes
tradicionais que tentam aprender uma função direta 𝐻(𝑥), os blocos residuais aprendem
uma função residual 𝐹 (𝑥), de modo que a saída do bloco seja dada pela Equação 2.1:

𝐻(𝑥) = 𝐹 (𝑥) + 𝑥 (2.1)

Essa conexão de identidade (+𝑥) permite que o gradiente flua livremente através
da rede durante o processo de retropropagação, mitigando o problema do desvanecimento
e permitindo o treinamento de redes com centenas de camadas.A operação 𝐹 (𝑥) + 𝑥

realiza o mapeamento de identidade, permitindo que a rede aprenda a função residual em
vez da função original completa, além de utilizar a função de ativação 𝑅𝑒𝐿𝑈 (Unidade
Linear Retificada) que basicamente transforma qualquer valor negativo em zero evitando
o desaparecimento do gradiente[12].Podemos observar essa operação na Figura 4

Figura 4 – Estrutura de um bloco de aprendizado residual.
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Neste trabalho, utiliza-se a variante ResNet-101 como backbone. Esta arquitetura
é composta por 101 camadas, estruturadas através de blocos do tipo Bottleneck, que
utilizam convoluções 1 × 1 para reduzir a dimensionalidade antes das convoluções 3 × 3,
otimizando o custo computacional.

O bloco Bottleneck opera manipulando a dimensão de profundidade (canais) para
otimizar o processamento. O mecanismo divide-se em três etapas sequenciais: compres-
são, processamento e expansão. Inicialmente, ocorre a redução da dimensionalidade via
convolução 1 × 1. Podemos ver a estrutura da operação na Figura 5, onde inicia com uma
convolução 1 × 1 para reduzir a dimensionalidade (de 256 para 64 canais), seguida pela
convolução espacial 3 × 3 e finalizando com a expansão para 256 canais, permitindo a
conexão residual [12].

Figura 5 – Estrutura do bloco residual do tipo Bottleneck.

Exemplificando com uma entrada de 32 × 32 × 256, a aplicação de 64 filtros 1 × 1
comprime a profundidade, gerando uma saída intermediária de 32 × 32 × 64. Nesta etapa,
cada filtro realiza uma combinação linear dos 256 canais de cada pixel. Em seguida, a
convolução espacial (3×3) é executada sobre esse mapa reduzido, o que diminui drastica-
mente o custo computacional. Finalmente, ocorre a expansão, onde uma nova camada de
convolução 1×1 com 256 filtros projeta os dados de volta à dimensão original, permitindo
a soma com a entrada através da conexão residual [12].

2.1.4 Evolução do modelo R-CNN

As CNNs são empregadas principalmente para extrair características de imagens
que, posteriormente, serão processadas por um classificador. No entanto, na tarefa de
detecção de objetos, é necessário não apenas classificar, mas também localizar o objeto na
imagem. Como uma única imagem pode conter múltiplos objetos em diferentes posições,
torna-se necessária a definição de Regiões de Interesse (RoIs – Regions of Interest) para
delimitar áreas com características relevantes.
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A arquitetura R-CNN (Regions with CNN features), proposta por Girshick [13],
foi uma das primeiras a integrar CNNs com propostas de regiões. Neste modelo, utiliza-se
o algoritmo de Busca Seletiva (Selective Search) [14] para gerar milhares de propostas de
regiões por imagem. Essas propostas são então recortadas e processadas individualmente
por uma CNN para a extração de características.

Como a entrada da CNN possui dimensões fixas, as regiões propostas, original-
mente de tamanhos variados, são submetidas a um processo de distorção (warping) para
se adequarem à entrada da rede, conforme observado na Figura 6 [13]. Após essa etapa,
a CNN extrai os vetores de características de cada região.

Para a etapa final de decisão, utiliza-se uma SVM (Support Vector Machine). Esta
técnica consiste num algoritmo de aprendizado supervisionado que classifica os dados ao
encontrar um hiperplano ótimo num espaço multidimensional, maximizando a margem de
separação entre as diferentes classes [15]. Embora eficaz, a arquitetura R-CNN apresenta
limitações de velocidade, servindo, no entanto, como uma das principais precursoras do
modelo Mask R-CNN.

Figura 6 – Fluxo de processamento da arquitetura R-CNN.

2.1.5 Fast R-CNN

O Fast R-CNN apresentou mudanças significativas em sua arquitetura comparado
ao seu antecessor, o R-CNN. A principal diferença é que a rede recebe como entrada a
imagem inteira e o conjunto de RoIs simultaneamente. Diferentemente do R-CNN, onde a
busca seletiva gerava milhares de regiões e cada uma passava individualmente pela CNN
(gerando redundância), no Fast R-CNN a imagem é processada apenas uma vez.

No Fast R-CNN, a imagem original é processada integralmente pela CNN, gerando
um mapa de características compartilhado. Sobre esse mapa, aplica-se a camada de RoI
Pooling, proposta por Girshick [16], que visa transformar a área de cada RoI (que possui
tamanho variável) em uma dimensão de tamanho fixo (𝐻 × 𝑊 ). Essa técnica divide a
região de interesse em uma grade de sub-regiões e aplica o pooling máximo em cada uma
delas. Desta forma, extrai-se o valor mais relevante de cada seção, resultando em uma
matriz de tamanho fixo, independentemente da dimensão original da proposta.
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Por fim, a rede gera duas camadas de saída, uma responsável por realizar a classifi-
cação do objeto na imagem usando a função softmax e a outra responsável pela regressão
da bounding box, que indica onde o objeto se encontra na imagem, conforme ilustrado na
Figura 7.

Figura 7 – Arquitetura do Fast R-CNN.

2.1.6 Faster R-CNN

Após os avanços introduzidos pelo Fast R-CNN, um novo modelo foi proposto
com o objetivo de otimizar o processo de geração de regiões de interesse: o Faster R-
CNN. Nesse modelo, foi apresentada a RPN (Region Proposal Network), que substituiu
o uso da busca seletiva [14] na etapa de propostas de região. Em vez de depender de um
método externo e não treinável, adicionou-se à arquitetura uma rede totalmente integrada,
capaz de gerar propostas diretamente a partir dos mapas de características obtidos pelas
primeiras camadas convolucionais.

A introdução da RPN impactou significativamente o desempenho do modelo. An-
teriormente, a busca seletiva representava um gargalo computacional por ser executada na
CPU e não utilizar os recursos de aprendizado da rede. Com a RPN integrada e utilizando
os dados do mapa de características compartilhado (na GPU), a geração das propostas
tornou-se muito mais eficiente, conforme demonstrado por Ren et al.[17].

Para viabilizar a detecção de objetos com diferentes escalas e proporções, a RPN
introduz o conceito de âncoras (anchors). Em vez de tentar prever as coordenadas de
uma região do zero, a rede utiliza um mecanismo de janela deslizante sobre o mapa de
características. Para cada posição dessa janela, são geradas múltiplas caixas de referência
(as âncoras) com diferentes escalas e razões de aspecto pré-definidas.

Conforme proposto por Ren et al. [17], utilizam-se tipicamente 3 escalas e 3 razões
de aspecto (ex: 1:1, 1:2 e 2:1), totalizando 𝑘 = 9 âncoras para cada ponto do mapa de
características, conforme demonstrado na Figura 8.
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Figura 8 – Funcionamento da Rede de Proposta de Região (RPN).

Para cada âncora, a RPN prediz simultaneamente dois valores: a probabilidade de
a caixa conter um objeto e os quatro deslocamentos (offsets) necessários para ajustar as
coordenadas da âncora à posição real do objeto (bounding box regression).

Para treinar a rede a realizar as tarefas de classificação e regressão de caixas
simultaneamente, Ren et al.[17] definiram uma função de perda multitarefa (multi-task
loss). O objetivo é minimizar o erro tanto na identificação da presença do objeto quanto
na precisão geométrica da caixa. A função de perda global para uma imagem é definida
pela Equação 2.2:

𝐿({𝑝𝑖}, {𝑡𝑖}) = 1
𝑁𝑐𝑙𝑠

∑︁
𝑖

𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝*
𝑖 ) + 𝜆

1
𝑁𝑟𝑒𝑔

∑︁
𝑖

𝑝*
𝑖 𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡*

𝑖 ) (2.2)

Neste contexto, 𝑖 é o índice de uma âncora no minibatch e 𝑝𝑖 é a probabilidade
prevista de a âncora ser um objeto. O termo 𝑝*

𝑖 representa o rótulo verdadeiro (ground
truth), sendo 1 se a âncora for positiva (contém objeto) e 0 se for negativa (fundo).

O primeiro componente, Lcls, representa a perda de classificação (referente à pro-
babilidade de objectness). Trata-se de uma função de perda logarítmica (log loss) sobre
duas classes (objeto vs. não-objeto), ensinando a rede a distinguir quais âncoras estão
sobrepondo os objetos reais.

O segundo componente, Lreg, refere-se à perda de regressão (saída box). É fun-
damental notar que este termo é multiplicado por 𝑝*

𝑖 , o que significa que a regressão da
caixa só é ativada e contabilizada quando há, de fato, um objeto na âncora (𝑝*

𝑖 = 1). Para
o cálculo desta perda, utiliza-se a função Smooth L1 definida por Girshick et al. [16], que
é mais robusta a outliers do que a perda L2 tradicional (erro quadrático).

O cálculo geométrico realizado pela camada de regressão não prevê as coordenadas
absolutas, mas sim parâmetros de transformação parametrizados. Sendo (𝑥, 𝑦, 𝑤, ℎ) as
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coordenadas do centro, largura e altura da caixa prevista, e (𝑥𝑎, 𝑦𝑎, 𝑤𝑎, ℎ𝑎) as da âncora,
a rede aprende os seguintes deslocamentos:

• Deslocamento de Centro:

Δ𝑥 = 𝑥 − 𝑥𝑎

𝑤𝑎

e Δ𝑦 = 𝑦 − 𝑦𝑎

ℎ𝑎

• Deslocamento de Escala:

Δ𝑤 = log
(︂

𝑤

𝑤𝑎

)︂
e Δℎ = log

(︃
ℎ

ℎ𝑎

)︃

Dessa forma, o modelo aprende a ajustar a âncora fixa para que ela se encaixe
perfeitamente no objeto alvo, garantindo invariância à escala e translação.

2.1.7 Mask R-CNN

O framework Mask R-CNN, proposto por He et al.[18], é uma extensão direta do
Faster R-CNN. Enquanto seu antecessor possui duas saídas principais para cada objeto
candidato (uma etiqueta de classe e uma bounding box) conforme demosntrado na Figura
9, o Mask R-CNN adiciona um terceiro ramo paralelo responsável por prever a máscara
de segmentação do objeto (máscara binária).

Figura 9 – Estrutura da arquitetura Mask R-CNN.

A grande inovação desta arquitetura é o desacoplamento da segmentação em rela-
ção à classificação. O ramo da máscara gera uma matriz 𝑚 × 𝑚 para cada classe possível,
aplicando uma função sigmoide em cada pixel, sem competir com a predição de classes.
Isso simplifica o fluxo de processamento do modelo e permite que o treinamento ocorra
de ponta a ponta. A função de perda multitarefa é definida pela Equação 2.3:

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 (2.3)
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Onde 𝐿𝑐𝑙𝑠 e 𝐿𝑏𝑜𝑥 são idênticos aos definidos no Fast R-CNN (classificação e re-
gressão da caixa), e 𝐿𝑚𝑎𝑠𝑘 é a entropia cruzada binária média, calculada pixel a pixel,
considerando apenas a máscara associada à classe verdadeira (ground truth) [18].

Para gerar essas máscaras preservando o arranjo espacial dos pixels, o Mask R-
CNN utiliza uma Rede Totalmente Convolucional (FCN) [19] aplicada a cada Região de
Interesse. No entanto, para que isso fosse possível com precisão, foi necessário corrigir um
problema estrutural das arquiteturas anteriores: a quantização.

Os modelos Fast e Faster R-CNN utilizavam a camada de RoI Pooling, que reali-
zava arredondamentos (quantização) nas coordenadas flutuantes para ajustá-las à grade
de características. Embora inofensivos para a detecção de caixas, esses arredondamentos
causavam um desalinhamento pixel a pixel, prejudicando a segmentação. Para solucionar
isso, [18] introduziram a camada RoI Align.

Diferentemente do RoI Pooling, o RoI Align elimina a quantização das coordena-
das. A técnica utiliza interpolação bilinear para calcular os valores exatos das caracte-
rísticas em quatro pontos de amostragem dentro de cada célula da RoI, garantindo um
alinhamento espacial preciso entre a entrada e a máscara de saída, fator crucial para a
detecção de avarias pequenas ou irregulares na superfície da maçã.

2.2 Trabalhos Correlatos

A aplicação de Visão Computacional na agricultura tem passado por uma transfor-
mação significativa nas últimas décadas. Historicamente, a inspeção de qualidade dependia
de processos manuais ou de técnicas clássicas de processamento de imagens, que utiliza-
vam filtros de cor e limiares fixos. No entanto, essas abordagens mostravam-se limitadas
em ambientes não controlados ou diante de defeitos com baixa variação cromática. Re-
centemente, o estado da arte migrou para soluções baseadas em Aprendizado Profundo
(Deep Learning), especificamente Redes Neurais Convolucionais, devido à sua robustez e
capacidade de generalização na detecção de padrões complexos em frutas e vegetais.

Neste cenário, diversas arquiteturas têm sido propostas para a detecção de avarias.
Uma das abordagens mais relevantes recentemente foi apresentada por Hou et al. [20].
Neste estudo, os autores utilizaram o modelo Faster R-CNN para identificar machucados
recentes e sutis em maçãs. Vale ressaltar que, para viabilizar a detecção dessas lesões de
baixa percepção a olho nu, os autores recorreram a imagens hiperespectrais, tecnologia
que realça as regiões danificadas em faixas espectrais específicas.

O uso dessa tecnologia evidencia o grau de desafio técnico deste trabalho, que
propõe detectar avarias utilizando apenas imagens convencionais (RGB). Para compensar
a ausência de dados espectrais e conseguir diferenciar danos sutis de manchas naturais,
esta pesquisa avança ao adotar o backbone ResNet-101, uma rede mais profunda e capaz



34

de extrair características semânticas mais complexas do que a ResNet-50 utilizada por
Hou et al. [20].

Além da questão do tipo de imagem usada, há uma diferença fundamental na
arquitetura de saída. Embora o método de Hou et al. [20] tenha sido eficaz na localização,
a saída limita-se a bounding boxes. Essa característica representa uma restrição técnica
significativa, pois a caixa engloba tanto a área danificada quanto parte íntegra da casca.

Nesse contexto de uso de imagens convencionais, destaca-se o trabalho de El Akrou-
chi et al. [21], que aplicaram o Mask R-CNN para a detecção e segmentação de panículas
de quinoa. O desafio central do estudo residiu na complexidade visual do ambiente de
campo, caracterizado pela baixa distinção entre o objeto e a vegetação de fundo.

Além de validarem o uso de imagens RGB, os autores conduziram uma avali-
ação comparativa crucial utilizando três backbones distintos: ResNet-50, ResNet-101 e
EfficientNet-B7. Essa análise demonstrou empiricamente como a variação na arquitetura
e na profundidade da rede influencia a capacidade de aprendizado e o desempenho final
da detecção. Para a presente pesquisa, esses resultados são relevantes, pois corroboram
a importância de selecionar um backbone robusto (como a ResNet-101) para lidar com
tarefas de detecção em cenários onde as características visuais são sutis ou complexas.

Um dos principais desafios no treinamento de redes neurais é a escassez de dados
anotados, especialmente em cenários onde as características a serem analisadas são sutis.
Contudo, conforme demonstrado por Osorio et al. [22], essa limitação pode ser mitigada
através de técnicas como transfer learning e estratégias de anotação progressiva.

Em seu trabalho, os autores aplicaram o modelo Mask R-CNN para a detecção e
contagem de culturas de alface e batata. O estudo utilizou um dataset reduzido, dividido
em duas categorias de anotação: um conjunto com demarcações simples e outro com
delimitações refinadas.

Os experimentos iniciais utilizaram os pesos pré-treinados do dataset COCO [23].
Ao treinar o modelo apenas com as anotações simples, os resultados mostraram-se in-
satisfatórios. Em contrapartida, o uso direto das anotações refinadas proporcionou uma
melhora significativa no desempenho.

Além disso, Osorio et al. [22] exploraram uma estratégia de transfer learning em
dois estágios. Inicialmente, a rede foi treinada com o dataset de anotações simples, par-
tindo dos pesos do COCO. Subsequentemente, utilizaram-se os pesos resultantes dessa
etapa para iniciar um novo ciclo de aprendizado com as anotações refinadas. Essa abor-
dagem superou o desempenho do modelo treinado exclusivamente com os dados refinados
desde o início, validando a eficácia do reaproveitamento de anotações menos precisas como
uma etapa intermediária de aprendizado.

Por fim, é relevante ressaltar a dimensão reduzida dos conjuntos de dados utiliza-
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dos: apenas 347 imagens para o dataset simples e 124 para o refinado. Esses resultados
evidenciam dois pontos cruciais, primeiro, é possível obter bons resultados mesmo com da-
tasets pequenos, e segundo, a qualidade das anotações tem maior impacto no desempenho
final do que a mera quantidade de dados.

Corroborando a viabilidade de aplicação em datasets reduzidos, Zhang et al. [24]
obtiveram êxito na extração de características fenotípicas de alfaces utilizando o Mask R-
CNN. Embora os autores tenham adotado um backbone distinto, seus resultados alinham-
se às conclusões de Osorio et al. [22] quanto à eficácia do modelo.

Para superar a limitação quantitativa das imagens originais, os autores emprega-
ram técnicas de aumento de dados (data augmentation). Essa estratégia permitiu expandir
artificialmente o conjunto de treinamento através de transformações nas imagens, garan-
tindo maior variabilidade e robustez ao modelo.

Outro diferencial metodológico importante foi a adoção da validação cruzada (k-
fold cross-validation) dividida em 5 partes (𝑘 = 5). Essa estratégia permitiu maximizar o
uso dos dados disponíveis e mitigar possíveis vieses de seleção, evitando que a avaliação
do modelo ficasse restrita a um conjunto fixo de treinamento e teste.
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3 MÉTODO DE PESQUISA

3.1 Aquisição e Tratamento de Dados

A aquisição das imagens foi realizada através de fotografias digitais com resolução
original de 3000×4000 pixels. Posteriormente, estas imagens foram submetidas a um pré-
processamento, sendo redimensionadas para a resolução de 512×683 pixels e padronizadas
no formato PNG.

As coletas foram conduzidas em ambiente real de comercialização (mercados), sob
condições de iluminação artificial variada. Um fator relevante deste conjunto de dados
é a complexidade do cenário, que apresenta um fundo variável composto por elementos
ruidosos como chão, prateleiras e outras frutas adjacentes, simulando as condições reais
de aplicação do modelo.

O dataset final é constituído por 300 imagens, que variam desde maçãs com avarias
severas e visíveis até frutos aparentemente sadios. Além disso, as amostras apresentam
diversidade na coloração da epiderme, incluindo tons de verde, amarelo e vermelho. Para
garantir a robustez estatística dos experimentos, a partição dos dados não seguiu uma
divisão estática; em vez disso, adotou-se a técnica de validação cruzada (k-fold cross-
validation). Essa abordagem permite utilizar a totalidade dos dados para treinamento e
validação em diferentes iterações, mitigando vieses de seleção.

Para a definição das categorias de detecção, o modelo foi configurado para um
problema de classe única. Desta forma, definiram-se apenas duas classes, a classe 0, re-
presentando o fundo da imagem (background), e a classe 1, correspondente ao objeto de
interesse, ou seja, os danos físicos presentes na epiderme da maçã.

A geração das máscaras de segmentação (ground truth) foi realizada manualmente,
utilizando uma ferramenta de anotação desenvolvida especificamente para esta pesquisa.
O software permite a demarcação precisa através de polígonos, ajustando-se aos contornos
irregulares das avarias. Para garantir a compatibilidade com o treinamento do modelo, a
ferramenta foi projetada para exportar as anotações seguindo rigorosamente o padrão de
dados do VGG Image Annotator (VIA), gerando arquivos no formato JSON contendo as
coordenadas espaciais de cada região.

Para garantir a diversidade das amostras e simular as técnicas de aumento de dados
(data augmentation), as operações de rotação e inversão foram realizadas manualmente no
momento da captura. Esta estratégia envolveu a variação física da orientação da fruta e da
câmera em cada registro, assegurando que o modelo fosse exposto a diferentes perspectivas
da maçã e dos danos, aumentando a capacidade de generalização da rede.
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Também foi aplicada essa estratégia de forma artificial, gerando um novo dataset
com tamanho 5× maior. Esse dataset foi utilizado em um experimento específico a fim de
validar a melhoria dos resultados utilizando essa técnica.

3.2 Configuração do modelo de treinamento

O treinamento do modelo de rede neural foi baseado na arquitetura Mask R-CNN,
que é reconhecida por sua segmentação de instâncias.

O modelo Mask R-CNN, utilizando o ResNet-101 como backbone, foi inicializado
com pesos pré-treinados no grande dataset COCO [23]. Esta abordagem de transfer lear-
ning é crucial para otimizar o processo de convergência, reduzindo o tempo de treinamento
necessário e auxiliando o modelo a alcançar alto desempenho com um dataset de dimensão
reduzida (300 imagens).

Em função dessa estratégia de reaproveitamento de conhecimento, a taxa de apren-
dizado (Learning Rate - 𝐿𝑅) foi ajustada dinamicamente. Utilizou-se um 𝐿𝑅 mais elevado
de 0.001 nas etapas iniciais (ajuste apenas das camadas de predição), enquanto um 𝐿𝑅

significativamente menor, de 0.0001, foi aplicado nos ciclos de fine-tuning que envolveram
o treinamento de todas as camadas. Essa redução final visa preservar o conhecimento
robusto já capturado pelo ResNet-101, assegurando que as modificações nos pesos sejam
feitas de forma cautelosa e incremental.

O processo de otimização foi conduzido utilizando o algoritmo Stochastic Gradient
Descent (SGD). Esta escolha é amplamente adotada em arquiteturas R-CNN devido à
sua eficácia na navegação pelo espaço de perdas e sua comprovada robustez.

Foi configurado um Momentum de 0.9 (LEARNING_MOMENTUM ), que é cru-
cial para acelerar a convergência em direções relevantes e amortecer as oscilações do
gradiente. Decaimento de Peso (Weight Decay): Aplicou-se um valor de 0.0001. Este pa-
râmetro atua como um termo de regularização 𝐿2, que penaliza pesos muito grandes,
mitigando o risco de sobreajuste (overfitting) nos dados.

O tamanho do lote (batch size) foi definido como uma (1) imagem por iteração. O
número total de iterações por época foi estabelecido em 240, o que corresponde a 80% do
dataset total, assegurando que o conjunto de treinamento fosse utilizado integralmente em
cada ciclo. Paralelamente, foram definidas 60 etapas de validação, garantindo que todas
as imagens do conjunto de validação fossem avaliadas ao final de cada época. Por fim, o
treinamento foi definido para 100 épocas, a fim de monitorar e avaliar detalhadamente o
comportamento da função de perda e a convergência do modelo.

O modelo final é treinado para minimizar o valor agregado (𝐿), conforme a Equação
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3.1:
𝐿 = 𝐿𝑅𝑃 𝑁𝑐𝑙𝑠

+ 𝐿𝑅𝑃 𝑁𝑏𝑜𝑥
+ 𝐿𝑀𝑅𝐶𝑁𝑁𝑐𝑙𝑠

+ 𝐿𝑀𝑅𝐶𝑁𝑁𝑏𝑜𝑥
+ 𝐿𝑀𝑅𝐶𝑁𝑁𝑚𝑎𝑠𝑘

(3.1)

Conforme a configuração adotada, o peso de contribuição para cada um dos cinco
componentes de perda foi ajustado para 1.0, garantindo que a rede atribua igual impor-
tância a todas as tarefas𝐿𝑅𝑃 𝑁𝑐𝑙𝑠

e 𝐿𝑅𝑃 𝑁𝑏𝑜𝑥
perdas pela classificação e ajuste da caixa das

propostas de região.𝐿𝑀𝑅𝐶𝑁𝑁𝑐𝑙𝑠
e 𝐿𝑀𝑅𝐶𝑁𝑁𝑏𝑜𝑥

perdas pela classificação final do objeto e
pelo refinamento das coordenadas da caixa delimitadora.𝐿𝑀𝑅𝐶𝑁𝑁𝑚𝑎𝑠𝑘

perda pela segmen-
tação do objeto, calculada separadamente para cada classe (para evitar competição entre
as classes na predição da máscara).

3.3 Métricas

A avaliação do desempenho de modelos de segmentação de instâncias exige mé-
tricas robustas que combinem precisão na classificação e acurácia na localização espacial.
Para este trabalho, as métricas escolhidas foram selecionadas para refletir a capacidade
do modelo de identificar o dano e segmentar seu contorno de forma precisa.

As métricas utilizadas para a análise de desempenho incluem o Intersection Over
Union (IoU), o F1-Score e, como métrica agregada principal, o Mean Average Precision
(mAP). A Função de Perda total do Mask R-CNN será monitorada durante o treinamento
como uma ferramenta de diagnóstico para avaliar a convergência e o ajuste dos pesos.

3.3.1 Intersection Over Union

Essa métrica demonstra o nível de precisão da localização do objeto detectado
em relação à área de referência do conjunto de validação. Como podemos ver na Figura
10 O IoU é a razão entre a Área de Intersecção, (a de sobreposição das áreas em azul
escuro), e a Área de União (o espaço total abrangido pelas máscaras real e predita). A
área delimitada pela borda verde representa a máscara real (Mgt), e a área delimitada
pela borda vermelha representa a máscara predita (Mp).

Figura 10 – Representação do cálculo do Intersection Over Union (IoU).
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A Intersection Over Union (IOU) é uma métrica fundamental utilizada no con-
texto de detecção de objetos para avaliar a similaridade e a qualidade da correspondência
entre a área detectada (bounding box prevista, BP) e a área real do objeto alvo ground
truth (bounding box real, BR). Essencialmente, a IOU verifica quão bem a localização e o
tamanho da caixa prevista se alinham com a caixa real.

O cálculo da métrica IoU para Máscaras em vez de bounding boxes consiste em
identificar primeiramente a área de sobreposição, ou intersecção, entre as duas máscaras,
sendo elas a predita (MP) e a real (MR). Na sequência, determina-se a área total ocupada
pelas duas máscaras juntas, denominada união. A métrica é então obtida através da
divisão da área da intersecção pela área da união, resultando em um valor adimensional
que varia entre 0 e 1.

Um resultado igual a 1 indica uma correspondência perfeita, enquanto o valor 0
denota que as máscaras não se interceptam em nenhum ponto. Quanto mais próximo o
coeficiente estiver de 1, superior é considerada a qualidade da segmentação. É importante
notar que essa comparação só possui validade estatística quando realizada entre máscaras
reais e predições pertencentes à mesma classe.

A aplicação do IoU é fundamental para classificar uma detecção como correta
baseando-se em um limiar de corte, ou threshold. Um limiar próximo de 1, como 0.75,
impõe um critério restritivo que exige sobreposição quase total para validar o acerto.
Em contrapartida, limiares mais próximos de 0 oferecem maior flexibilidade, aceitando
detecções com sobreposições parciais entre a predição e o valor real [25]. Por fim, para
uma análise global do desempenho do modelo, utiliza-se a média do IoU de todas as
imagens (mIoU), avaliada em conjunto com a confiabilidade da região delimitada, a qual
é mensurada submetendo as predições a variadas faixas de limiares.

3.3.2 Average Precision

O cálculo das métricas de desempenho baseia-se inicialmente na qualidade da
localização, mensurada pelo Intersection over Union (IoU).

Para definir se uma detecção é válida, aplica-se um limiar (threshold, geralmente
𝛼 = 0.5). Se o IoU calculado for superior a este limiar, a detecção é considerada correta.
Em cenários onde o modelo gera múltiplas predições para um mesmo objeto, considera-se
aquela com a maior intersecção válida, conforme ilustrado na Figura 11, onde é composta
por três imagens: a imange mais à esquerda mostra a predição do modelo de duas áreas
em ciano e vermelho, a mais à direita mostra a máscara real em vermelho, e no meio, a
interseção entre a predição que cobriu a maior área da máscara real, destacada em verde.
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Figura 11 – Exemplo de seleção da melhor interseção de IoU para validação da detecção.

Com base nesse critério de IoU, as predições são classificadas em três categorias:

• Verdadeiro Positivo (VP): O modelo detecta um dano existente com precisão de
localização suficiente (IoU ≥ 𝛼).

• Falso Positivo (FP): O modelo prevê um dano onde não existe (alarme falso) ou a
localização é imprecisa (IoU < 𝛼).

• Falso Negativo (FN): Existe um dano real na imagem, mas o modelo falha em
detectá-lo.

Com base nessa classificação, obtêm-se duas métricas essenciais: a Precisão (Equa-
ção 3.2), que define o grau de certeza das detecções geradas pelo modelo, e o Recall (Equa-
ção 3.3), que demonstra o quanto o sistema foi capaz de cobrir todas as instâncias reais
presentes na imagem.

Precisão = 𝑉 𝑃

𝑉 𝑃 + 𝐹𝑃
(3.2)

Recall = 𝑉 𝑃

𝑉 𝑃 + 𝐹𝑁
(3.3)

Para sintetizar o desempenho do modelo, utiliza-se o Average Precision (AP). O
cálculo desta métrica envolve ordenar todas as predições do conjunto de validação de forma
decrescente pelo score de confiança. Com essa lista ordenada, calculam-se a Precisão e o
Recall acumulados a cada nova predição, construindo a Curva Precisão-Recall (P-R).

A Average Precision (AP) corresponde à área sob esta curva. Essa área é calcu-
lada através de uma soma discreta, ponderando a precisão em cada incremento de recall.
Matematicamente, o AP é definido pela equação 3.4.

AP =
𝑛∑︁

𝑘=1
(𝑅𝑘 − 𝑅𝑘−1) × 𝑃𝑘 (3.4)
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Onde

• 𝑛 é o número total de predições.

• 𝑅𝑘 e 𝑃𝑘 são, respectivamente, o Recall e a Precisão da predição k 𝑘.

.

3.3.3 F1-Score

Enquanto a Precisão e o Recall fornecem visões isoladas sobre a confiabilidade e
a sensibilidade do modelo, muitas vezes é necessária uma métrica única que sintetize o
equilíbrio entre ambas. Para isso, utiliza-se o F1-Score (ou Medida-F).

Conforme definido por Sasaki et al. [26], o F1-Score é a média harmônica entre a
precisão e o Recall. A escolha pela média harmônica, em vez de usar a média aritmética
simples, deve-se à sua propriedade de penalizar valores extremos. Isso significa que, para
o F1-Score ser alto, tanto a Precisão quanto o Recall precisam ser altos simultaneamente.
Se uma das métricas for muito baixa (ex.: o modelo encontra todos os danos, mas gera
muitos alarmes falsos), o F1-Score cairá drasticamente.

Matematicamente, a métrica é definida pela Equação 3.5:

F1 = 2 × Precisão × Recall
Precisão + Recall (3.5)

Onde:

• O valor resultante varia entre 0 e 1;

• Um valor próximo de 1 indica que o modelo possui excelente precisão e robustez na
detecção (baixo índice de falsos positivos e falsos negativos).

O F1-Score é calculado para um limiar de IoU específico (geralmente 0.5), servindo
como um indicador pontual da eficiência do modelo em equilibrar a detecção correta dos
danos sem excesso de predições incorretas.
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4 EXPERIMENTOS

4.1 Execução do Treinamento em Cenário com Dataset Original

Para avaliar o impacto da profundidade do ajuste fino (fine-tuning) e da taxa
de aprendizado na detecção de danos, foram conduzidos dois experimentos independen-
tes. Em ambos os cenários, a rede foi inicializada com os pesos pré-treinados do dataset
MS COCO [23], garantindo que os modelos partissem da mesma base de conhecimento
genérico, sem que houvesse transferência de aprendizado sequencial entre as etapas expe-
rimentais.

Visando assegurar a robustez estatística dos resultados e mitigar possíveis vie-
ses de seleção, a metodologia de validação cruzada (k-fold cross-validation) foi aplicada
rigorosamente em ambos os experimentos. Para cada cenário, o conjunto de dados foi
particionado em 𝑘 = 5 subconjuntos distintos.

Consequentemente, o ciclo de treinamento foi realizado cinco vezes para cada confi-
guração de modelo, alternando-se os conjuntos de treinamento e validação a cada iteração.
Desta forma, os resultados finais de AP50 e AP75 apresentados neste trabalho não refletem
uma execução isolada, mas sim a média aritmética obtida através das cinco validações,
oferecendo uma estimativa confiável e imparcial da capacidade de generalização da rede.

4.1.1 Primeiro cenário experimental

Denominado Treinamento das Camadas de Predição, o processo restringiu-se ex-
clusivamente às camadas superiores da rede, conhecidas como heads. Estas camadas são
responsáveis pela proposta de regiões, classificação e geração das máscaras finais. Nesta
configuração, os pesos do backbone ResNet-101 foram mantidos congelados (frozen), impe-
dindo a atualização dos parâmetros das camadas extratoras de características profundas.
Para esta etapa, definiu-se uma taxa de aprendizado (Learning Rate) de 0.001.

O valor mais elevado justifica-se pela necessidade de ajustar rapidamente os pesos
das novas camadas, que são inicializados aleatoriamente, sem o risco de degradar as ca-
racterísticas extraídas pelo backbone estático. O objetivo principal deste experimento foi
verificar se as características genéricas extraídas pela ResNet-101 seriam suficientes para
descrever os danos nas maçãs, ajustando apenas a camada final de decisão.

4.1.2 Segundo cenário experimental

Neste cenário, realizou-se o treinamento completo da Rede, consistindo na atua-
lização de toda a arquitetura. Diferentemente do anterior, todas as camadas foram des-
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congeladas (unfrozen) desde o início do processo, permitindo a propagação do gradiente
e a atualização dos pesos em toda a profundidade da rede.

Para este experimento, a taxa de aprendizado foi reduzida para 0.0001. Essa re-
dução constitui uma medida de segurança essencial no fine-tuning profundo, visando pre-
servar o conhecimento prévio do backbone enquanto se realizam ajustes finos e cautelosos
nas características semânticas. O objetivo central foi permitir que a rede aprendesse pa-
drões específicos da textura e das bordas dos danos, que são muito diferentes dos objetos
comuns encontrados no dataset COCO, integrando esse conhecimento desde as camadas
base até a saída.

4.2 Execução do Treinamento em Cenário com Dataset Expan-
dido

Nesta etapa experimental, o foco deslocou-se para a avaliação do impacto do vo-
lume de dados no desempenho do modelo. Para isso, utilizou-se o conjunto de dados
expandido artificialmente, gerado através das técnicas de aumento de dados (data aug-
mentation) detalhadas na metodologia, tais como rotação e espelhamento. Assim como
nos cenários anteriores, a rede foi inicializada carregando os pesos pré-treinados do dataset
MS COCO, garantindo uma base sólida de extração de características.

A estratégia de treinamento adotada para este cenário consistiu na liberação de
todas as camadas da rede para atualização desde o início do processo. Contudo, dife-
rentemente do ajuste fino realizado no dataset original, a taxa de aprendizado (Learning
Rate) foi configurada em 0.001. Esta escolha visa explorar a capacidade de convergência
da rede diante de uma maior diversidade de amostras, mantendo uma taxa de atualização
de pesos mais agressiva para o treinamento da arquitetura completa.

Devido ao aumento substancial no número de imagens disponíveis, os parâmetros
de duração da época foram ajustados proporcionalmente para assegurar que todo o con-
junto de dados fosse processado a cada ciclo. Desta forma, definiram-se 1440 etapas de
treinamento e 360 etapas de validação por época. Esse dimensionamento garante a cober-
tura integral das variações sintéticas e originais, permitindo um monitoramento preciso
da função de perda e das métricas de avaliação ao longo do treinamento.

Vale ressaltar uma alteração metodológica específica para este cenário. Diferente-
mente dos experimentos anteriores, não foi aplicada a técnica de validação cruzada (k-fold
cross-validation). Esta decisão justifica-se pelo aumento substancial no volume de dados
e, consequentemente, na carga computacional exigida.

Considerando que o dataset expandido aumentou o número de etapas por época
para 1440, a execução de cinco ciclos completos de treinamento (como exigido pelo 𝑘 = 5)
tornaria o tempo de processamento inviável dentro do escopo deste trabalho. Por isso,
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optou-se por uma divisão fixa entre treino e validação (80% para treinamento e 20% para
validação).
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5 RESULTADOS

Neste capítulo, são apresentados e discutidos os resultados experimentais obtidos
na detecção e segmentação de danos em maçãs. A análise está estruturada de acordo com
os cenários definidos na metodologia, primeiramente, avalia-se o desempenho no cenário
com dataset original, comparando as estratégias de treinamento das camadas de topo
(head) versus o modelo (all), com validação cruzada (k-fold).

Posteriormente, analisam-se os impactos do aumento de dados (data augmenta-
tion) no cenário com dataset expandido. Por fim, realiza-se uma análise qualitativa visual
das máscaras geradas para validar a aplicabilidade do modelo.

Após o ciclo de treinamento, obtiveram-se os resultados da função de perda para
os conjuntos de treino e validação. Inicialmente, analisa-se o resultado do experimento
com k-fold mantendo o congelamento (freezing) dos pesos, treinando apenas as camadas
heads.

Pode-se observar na Figura 12 que tanto a perda de treino (loss) quanto a de
validação (val loss) iniciaram com valores próximos a 1.5. Porém, com o avanço das
épocas, as curvas distanciaram-se progressivamente. Embora a perda de validação tenha
reduzido nas etapas iniciais, nota-se que, após a época 20, ela volta a crescer gradualmente,
à primeira vista, indicando uma dificuldade de generalização do modelo.

Figura 12 – Curvas de aprendizado da função de perda durante o treinamento do modelo
head.

Ao decompor os componentes da função de perda, torna-se possível analisar deta-
lhadamente o comportamento da convergência. A Figura 13 demonstra que, no conjunto
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de treinamento, todas as perdas convergem gradualmente, conforme esperado.

Figura 13 – Curvas de aprendizado dos elementos que compõem a perda total de treina-
mento do modelo head.

Entretanto, o cenário de validação apresentado na Figura 14, revela um compor-
tamento distinto. Observa-se que as perdas de classificação e regressão (bounding box)
convergiram levemente nas etapas iniciais e, em seguida, estagnaram. Em contrapartida,
a perda da máscara convergiu levemente no início, mas logo passou a divergir gradual-
mente.

Figura 14 – Curva de aprendizado dos elementos que compõem a perda total de validação
do modelo head.

Essa disparidade permite concluir que, embora o modelo mantenha uma boa pre-
cisão na localização da área do dano (validada pela estabilidade da mrcnn bbox loss),
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ele perde progressivamente a capacidade de segmentação precisa. Ou seja, indicando que
com o avanço do treinamento, a rede falha em segmentar com precisão a máscara real
de validação. Porém devemos levar em consideração que a proporção de tamanho dos da-
nos referentes a imagem são relativamente pequenos, fazendo com que qualquer variação
mínima entre a mascara real e a predição do modelo elevem o erro da mascara.

Prosseguindo para a análise do treinamento completo do modelo (All), observa-se
na Figura 15 um padrão comportamental similar ao cenário anterior, caracterizado pela
divergência entre as curvas de treino e validação. Contudo, uma diferença crucial reside
na magnitude dos valores. O treinamento começou com perdas abaixo de 1.0, o que sugere
um ajuste rápido do modelo ao conjunto de dados do que o modelo anterior.

Figura 15 – Curvas de aprendizado da função de perda durante o treinamento do modelo
all.

Embora a perda de validação (val loss) do modelo All tenha apresentado cres-
cimento gradual conforme o avanço das épocas, seus valores absolutos mantiveram-se
majoritariamente abaixo de 1.5, estado que correspondia apenas ao início do treinamento
no cenário do modelo Head. Isso sugere que o descongelamento das camadas profundas
permitiu refinar a extração de características, resultando em um erro final menor.

Decompondo o loss e val loss, podemos rever o mesmo cenário que do modelo
Head, a perda no treinamento convergiu gradualmente sem problemas, porém com valores
iniciais menores que no treinamento do modelo Head. O mesmo comportamento ocorre
com a perda de validação, apresentando valores absolutos mais baixos, mas mantendo a
tendência de crescimento da perda da mascara, como podemos ver nas Figuras 16 e 17.
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Figura 16 – Curvas de aprendizado dos elementos que compõem a perda total de treino
do modelo all (sem o RPN Class loss).

Nota: O componente RPN Class loss foi suprimido do gráfico pois apresentou valores discrepantes
(outliers) em algumas épocas, o que distorcia a escala e impossibilitava a visualização correta dos

demais elementos.

Figura 17 – Curvas de aprendizado dos elementos que compõem a perda total de validação
do modelo all.

A análise das curvas de perda do modelo treinado com o dataset aumentado, deno-
minado deExpanded, revela uma evolução substancial. A perda de validação estabilizou-se
em patamares inferiores a 0.8 como demonstrado na Figura 18, contrastando com os ce-
nários anteriores, onde o modelo Head atingiu valores próximos a 1.5 e o modelo All
aproximou-se de 1.25. Essa redução drástica na perda de validação representa um ga-
nho de desempenho de 53, 3% quando comparado ao cenário base (Head), evidenciando
a eficácia do aumento de dados na adaptabilidade do modelo.



51

Figura 18 – Curvas de aprendizado da função de perda durante o treinamento do modelo
expanded.

A figura destaca a época 37 como o ponto de mínima validação, onde a perda de treina-
mento atingiu 0.4926.

A decomposição do erro de validação, apresentada na Figura 19, revela que o
componente de maior impacto foi a perda de regressão das propostas de região (RPN
Box Loss). As perdas de classificação estagnaram, apresentando uma leve divergência nas
épocas finais, mas mantiveram-se majoritariamente abaixo de 0.1. O destaque principal,
contudo, reside nas perdas de Bounding Box e da Máscara, que inicialmente convergiram
gradualmente e estabilizaram.

Figura 19 – Curvas de aprendizado dos elementos que compõem a perda total de validação
do modelo expanded.
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Ao analisar as curvas de perda de treinamento na Figura 20, observou-se uma
divergência sequencial no treinamento: a partir da época 40, a perda de classificação
(MaskRCNN CLASS) desestabilizou-se, seguida pelo colapso da RPN (RPN CLASS)
após a época 60 e da regressão das caixas (MaskRCNN BBOX) após a época 80. Essa
instabilidade deve-se à taxa de aprendizado de 0.001, que se mostrou agressiva para a
atualização simultânea de toda a rede. Portanto, a análise restringi-se às épocas estáveis
anteriores a esses eventos.

Figura 20 – Curvas de aprendizado dos elementos que compõem a perda total de traina-
mento do modelo expanded.
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Avançando para a análise quantitativa, apresenta-se a comparação do desempenho
dos modelos em relação às métricas estabelecidas. As Figuras 21, 22 e 23 apresentam
os resultados obtidos em cada época para as métricas: Average Precision (AP@50) e
F1-Score@50 (ambas com threshold de 0.5), além da média de interseção sobre união
(mIoU ).

Figura 21 – Curvas de Average Precision (AP) calculadas com threshold de 0.5.

Figura 22 – Curvas de F1 score (F1) calculadas com threshold de 0.5.
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Figura 23 – Curvas de mIoU média de interseção sobre união

Conforme detalhado na Tabela 1, o modelo treinado com o dataset expandido
adaptou-se melhor do que as abordagens anteriores. Enquanto o modelo Head (Freezing)
estagnou com um mIoU de 0.6129 e o All (Unfreezing) atingiu 0.6441, o modelo Expan-
ded alcançou a marca de 0.7059, demonstrando maior capacidade de segmentação. Vale
ressaltar que, para o modelo Expanded, os dados reportados na tabela foram extraídos
exclusivamente das épocas de estabilidade numérica, ignorando os picos de divergência
causados por explosões de gradiente, a fim de garantir uma avaliação mais fiel do potencial
da rede.

Tabela 1 – Comparativo detalhado dos melhores resultados obtidos por métrica e a res-
pectiva época de ocorrência para cada modelo.

Head (Freezing) All (Unfreezing) Expanded

Métrica Valor Ep. Valor Ep. Valor Ep.

AP@50 0.6953 28 0.7737 20 0.8757 18
AP@75 0.2205 45 0.2681 38 0.3139 04
F1@50 0.7227 48 0.7899 80 0.8735 30
F1@75 0.3359 79 0.3882 91 0.4269 25
mIoU 0.6129 22 0.6441 12 0.7059 27

Nota: Valores em negrito indicam o melhor desempenho. "Ep."refere-se à época de treinamento onde o
valor máximo foi registrado. Para o modelo Expanded, os valores foram extraídos apenas das épocas em
que não houve explosões de gradiente.
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Para a análise qualitativa das segmentações, as Figuras abaixo apresentam um
comparativo visual entre as máscaras preditas e a anotação real (ground truth). A seleção
dos pesos para a geração dessas inferências baseou-se estritamente no melhor desempenho
de segmentação obtido.

Para os modelos treinados com validação cruzada, isolou-se o subconjunto (fold)
de maior rendimento: no cenário Head, utilizou-se o Fold 4 na época 22 (𝑚𝐼𝑜𝑈 = 0.7051);
no cenário All, selecionou-se o Fold 4, com pico de desempenho na época 13 (𝑚𝐼𝑜𝑈 =
0.7255). Já para o modelo Expanded, o melhor resultado estável foi registrado na época
27 (𝑚𝐼𝑜𝑈 = 0.7059).

Na Figura 24 podemos observar o comparativo visual de segmentação. A ima-
gem original apresenta o ground truth com duas máscaras reais destacadas em ciano e
vermelho. As demais imagens ilustram a capacidade de detecção e o delineamento das
máscaras geradas pelos modelos Head, All e Expanded para estas mesmas instâncias.

Figura 24 – Predição 1 dos modelos Head, All e Expanded em comparação com a mascara
real.
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Na Figura 25 observamos o comparativo de robustez a sombras. O modelo Head
gerou um falso positivo (máscara ciano) ao confundir a sobra entre o dedo e a maçã com
um defeito. Os modelos All e Expanded realizaram a detecção correta, ignorando sobra e
segmentando apenas o dano real (vermelho).

Figura 25 – Predição 2 dos modelos Head, All e Expanded em comparação com a mascara
real.
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E por fim na Figura 26 visualizamos o comparativo de detecção. Todos os modelos
detectaram o defeito, porém o modelo Expanded apresentou uma capacidade de generali-
zação superior, demonstrando maior precisão no delineamento da curvatura do dano em
relação aos modelos Head e All.

Figura 26 – Predição 3 dos modelos Head, All e Expanded em comparação com a mascara
real.
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6 CONCLUSÃO

O presente estudo cumpriu o objetivo de avaliar o desempenho e a utilidade da
arquitetura Mask R-CNN na tarefa complexa de segmentação de instâncias de danos
físicos em maçãs. A investigação comparativa permitiu identificar os limites da aplicação
de Transfer Learning em datasets pequenos e a importância da variabilidade de dados
para a precisão da segmentação.

A análise dos experimentos demonstrou que as estratégias baseadas exclusivamente
no ajuste de pesos (Head e All) apresentaram limitações. Embora esses modelos tenham
sido eficazes na localização espacial do defeito (detecção), a decomposição da função de
perda de validação revelou uma dificuldade de delinear a forma precisa da avaria em
realção as anotações espaciais reais, refletida na divergência persistente da perda de seg-
mentação (𝐿𝑚𝑎𝑠𝑘). Identificou-se que essa dificuldade técnica decorre da relação de escala,
como a proporção do dano físico é significativamente menor que a área total da imagem,
pequenas imprecisões na predição da máscara geram penalizações desproporcionais nas
métricas de validação.

Em contrapartida, a investigação confirmou que a capacidade de generalização do
modelo está diretamente atrelada à exposição a variações espaciais durante o treinamento.
A utilização do dataset expandido (Data Augmentation) provou ser a estratégia determi-
nante para a estabilização do modelo. Esta abordagem permitiu que a rede aprendesse
a variabilidade topológica dos defeitos, resultando em uma redução drástica no erro de
segmentação e elevando o mIoU.

Conclui-se, portanto, que a arquitetura Mask R-CNN é uma ferramenta viável para
auxiliar no cumprimento dos critérios relacionados a danos físicos da Instrução Normativa
n.º 5/2006 [2]. O trabalho contribui para a modernização do setor frutícola ao demonstrar
que, para além da simples detecção, é possível alcançar a segmentação automatizada
necessária para mitigar a subjetividade humana no controle de qualidade de maçãs.

Para trabalhos futuros, propõe-se a otimização da arquitetura visando a execução
do modelo em tempo real, permitindo sua integração em esteiras de classificação industrial.
Recomenda-se também o desenvolvimento de métodos de pós-processamento para realizar
o cálculo métrico da área dos danos segmentados (convertendo a contagem de pixels para
𝑚𝑚2 ou 𝑐𝑚2). Com base nessas medições, sugere-se a implementação de um algoritmo
de decisão que aplique as tolerâncias da Instrução Normativa n.º 5/2006[2], classificando
automaticamente as maçãs nas categorias Extra, Categoria I, Categoria II e Categoria III,
consolidando assim uma solução completa para a automação do controle de qualidade.
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