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. Deteccao e Segmentacao de Danos Fisicos em Magas Utilizando Mask R-
CNN. 62 p. Trabalho de Conclusao de Curso — Versao Preliminar (Bacharelado em Ci-
éncia da Computacao) — Universidade Estadual do Parand, Apucarana—PR, 2025.

RESUMO

A inspegao de qualidade de macgas é um processo fundamental para atender as normas
regulatérias brasileiras (IN n.° 5/2006), porém a andlise manual apresenta limitagoes de
subjetividade e escalabilidade. Este trabalho avalia o desempenho e a utilidade pratica de
uma solugao automatizada baseada em Visao Computacional, utilizando a arquitetura de
rede neural Mask R-CNN para a segmentacao de instancias de danos fisicos nas macas.
A metodologia fundamentou-se na técnica de Transfer Learning com backbone ResNet-
101, utilizando um dataset inicial de 300 imagens que foi ampliado para 1.800 amostras
através de Data Augmentation. Foram realizados trés experimentos comparativos, trei-
namento com congelamento de camadas (freezing), descongelamento total (unfreezing) e
uso de dataset expandido. Os resultados demonstraram que as estratégias iniciais apre-
sentaram dificuldades na tarefa de segmentagao, refletidas na divergéncia da funcao de
perda de validagao. Ressalta-se que a desproporgao entre o tamanho da imagem e o dano
fisico faz com que pequenas variagoes na mascara gerem penalizacoes elevadas no erro.
Em contrapartida, o modelo treinado com o conjunto de dados expandido apresentou es-
tabilidade e generalizacao superior. Conclui-se que a aplicagdo da Mask R-CNN; aliada ao
aumento da variabilidade de dados, é uma abordagem eficaz, comprovando sua utilidade
técnica para a mensuracao precisa e segmentacao de danos fisicos em macas.

Palavras-chave: Visao Computacional. Mask R-CNN. Segmentacao de instancias.






. Detection and Segmentation of Physical Damage in Apples Using Mask R-
CNN. 62 p. Final Project — Draft Version (Bachelor of Science in Computer Science) —
State University of Parana, Apucarana—PR, 2025.

ABSTRACT

Quality inspection of apples is a fundamental process for complying with Brazilian regu-
latory standards (IN No. 5/2006), however, manual analysis presents limitations in terms
of subjectivity and scalability. This work evaluates the performance and practical util-
ity of an automated solution based on Computer Vision, using the Mask R-CNN neural
network architecture for segmenting instances of physical damage in apples. The method-
ology was based on the Transfer Learning technique with a ResNet-101 backbone, using
an initial dataset of 300 images that was expanded to 1,800 samples through Data Aug-
mentation. Three comparative experiments were performed: training with layer freezing,
total unfreezing, and use of an expanded dataset. The results demonstrated that the ini-
tial strategies presented difficulties in the segmentation task, reflected in the divergence
of the validation loss function. It is noteworthy that the disproportion between the image
size and the physical damage causes small variations in the mask to generate high error
penalties. In contrast, the model trained with the expanded dataset showed superior sta-
bility and generalization. It is concluded that the application of Mask R-CNN, combined
with increased data variability, is an effective approach, proving its technical utility for
the precise measurement and segmentation of physical damage in apples.

Keywords: Computer Vision. Mask R-CNN. Instance Segmentation.
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1 INTRODUCAO

A cultura da maga movimenta mais de um bilhao de reais por ano no Brasil e gera
milhares de postos de trabalho nas regides Sul e Sudeste [1]. Para garantir a qualidade do
fruto que chega ao consumidor, o Ministério da Agricultura, Pecuaria e Abastecimento
editou a Instru¢ao Normativa n.2 5/2006, estabelecendo limites de cor, calibre e tolerdncia

a defeitos para as categorias Extra, 1, 2 e 3 [2].

Para determinar a qualidade da fruta, sao avaliados diversos aspectos, como colo-
ragao, caracteristicas da epiderme (lisura, brilho, manchas) e lesoes fisicas. Muitas dessas
caracteristicas, especialmente as irregularidades na casca, dependem exclusivamente de

avaliacao visual.

Essa avaliacao é geralmente realizada manualmente em processos de inspecao de
qualidade, que dependem de avaliadores treinados para cumprir as diretrizes da instrugao
normativa n.° 5 [3]. Entretanto, a rapidez do processo e a fadiga visual geram erros e
falta de padronizagao na classificacao. Por isso, torna-se necessario apoiar ou substituir o

trabalho manual por sistemas automatizados mais confiaveis.

Visto que a classificagao regida pela normativa n.° 5/2006 [2] avalia quatro cate-
gorias de atributos relacionados a danos fisicos, especificamente lesoes cicatrizadas (leves
e graves), danos mecanicos por impacto e lesoes abertas, e considerando que a gravidade
desses defeitos depende da mensuragao da area ocupada na superficie da fruta (em mi-
limetros ou centimetros quadrados), torna-se viavel a automagao dessa andlise por meio

de processamento computacional de imagens.

Nesse contexto, os avancos recentes em Visao Computacional, especialmente nas
Redes Neurais Convolucionais (CNN), sistemas matematicos capazes de extrair automa-
ticamente padroes de cor e textura por meio de operagoes de convolugao [4], oferecem

uma alternativa promissora para a modernizagao da inspegao de frutas [5].

A aplicacao desses modelos apresenta-se como uma solucao eficiente para o con-
trole de qualidade de macas. Considerando que os danos fisicos na epiderme depreciam o
produto final e possuem critérios de desclassificagao baseados na extensao da area afetada,
este trabalho utiliza a arquitetura Mask R-CNN. O objetivo central é avaliar o desempe-
nho técnico e a utilidade pratica do modelo na segmentagao de instancias dessas avarias,

investigando sua capacidade de mensurar com precisao a extensao do dano.

Diferentemente de arquiteturas focadas exclusivamente na detec¢ao de objetos
(bounding bozxes), o Mask R-CNN realiza a segmentacao de instancias, gerando méscaras
que delimitam a regiao de interesse em nivel de pixel. Tal capacidade é o que define a

utilidade da ferramenta para a inspecao de magas, pois permite nao apenas localizar, mas
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também delimitar com exatidao a area de multiplas avarias, fornecendo as métricas de

area necessarias para mitigar a subjetividade humana.

Assim, a pesquisa visa avaliar o desempenho e a utilidade da arquitetura na seg-
mentacao de danos fisicos em macas, investigando a capacidade do modelo em delinear
com precisao a extensao das avarias. O trabalho justifica-se pelo potencial de moderniza-
¢ao do setor, introduzindo uma abordagem automatizada capaz de mitigar a subjetividade

humana e auxiliar na padronizacao do controle de qualidade de macas.

O trabalho comeca apresentando a base tedrica, explicando os conceitos de Redes
Neurais Artificiais (RNA), desde a aplicagdo inicial com o Perceptron até a evolucao para
as Redes Neurais Convolucionais (CNNs). Logo depois, o texto explica o papel da “espinha
dorsal” (backbone) na extracao das caracteristicas da imagem e detalha por que escolheu

a arquitetura residual ResNet-101 para este estudo.

Ainda na parte tedrica, o estudo destaca como a arquitetura Mask R-CNN evoluiu
ao longo do tempo. O texto descreve os modelos que vieram antes (R-CNN, Fast R-CNN
e Faster R-CNN) e mostra as melhorias que cada um trouxe até chegar na capacidade

atual de fazer a segmentacao de instancias.

Na secao de trabalhos correlatos, a pesquisa analisa outros estudos que usaram a
familia R-CNN, principalmente o Mask R-CNN, na agricultura. Foram usadas referéncias
sobre plantagoes de alface, quinoa e detec¢ao de danos em magcas para comparar resultados

e definir as estratégias de melhoria do modelo.

O método de pesquisa define como as imagens foram coletadas e como o conjunto
de dados (dataset) foi montado, além das configuragoes usadas no treinamento. Para
medir os resultados, foram escolhidas métricas como a Average Precision (AP), F1-Score
e Intersection over Union (IoU), além de acompanhar a fungao de perda (Loss) do proprio
Mask R-CNN.

Nos experimentos, o trabalho detalha as trés abordagens usadas para treinar a
rede: a Head (treinando apenas as camadas de topo), a All (ajuste fino completo da rede)

e a Expanded (usando técnicas para aumentar o niimero de imagens).

Por fim, nos resultados e conclusao, o texto avalia como o modelo se saiu em cada
cenario. A conclusao é que, apesar de todas as estratégias mostrarem resultados interes-
santes, a abordagem do experimento Fzxpanded teve o melhor desempenho, conseguindo

generalizar melhor e ter mais precisao na segmentagao.
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2 FUNDAMENTACAO TEORICA

2.1 Técnicas

2.1.1 Redes Neurais Artificiais

As Redes Neurais Artificiais (RNA) consistem em modelos computacionais inspi-
rados na estrutura biolégica e no funcionamento do cérebro humano, caracterizando-se

por um conjunto de unidades de processamento simples (neurénios) interconectadas.

A unidade fundamental da RNA é o Neuronio Artificial, projetado para mimetizar
a capacidade de aprendizado bioldgico. Um marco inicial dessa abordagem foi o modelo
Perceptron, proposto por Rosenblatt [6]. Matematicamente, essa estrutura é composta por
um vetor de entradas, pesos (coeficientes de ponderacao), uma func¢ao de transferéncia
(ou limiar) e uma fungdo de ativagdo que determina a resposta de saida do neurénio.

Podemos ver essa estrutura do Perceptron, composto por multiplas entradas na Figura 1
[6].

Perceptron de {E
Rosenblatt S(5)

Fungiio de
I ativagdo

Figura 1 — Estrutura do Perceptron de Rosenblatt.

A camada de entrada recebe os dados brutos a serem processados pelo modelo.
Cada entrada é associada a um peso, que atua como um coeficiente de ponderacao. O
ajuste desses pesos determina a relevancia de cada dado de entrada, sendo esta a forma

como a rede armazena o conhecimento extraido durante o treinamento.

Estes componentes, juntamente com a fungao de transferéncia (ou juncao), permi-
tem calcular o resultado da soma ponderada das entradas. Esse valor serd posteriormente

processado pela funcao de ativagao, definindo a saida final da rede.

No Perceptron de Rosenblatt, por exemplo, utiliza-se a fungdo degrau binaria, a
qual produz apenas dois valores de saida: 0 ou 1 (ou —1 e 1, em algumas variagoes). Essa

resposta depende da comparacgao entre a soma ponderada e um valor fixo denominado
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limiar (threshold): se a soma for maior ou igual ao limiar, a saida assume o valor 1; caso

contrario, assume o valor 0.

As redes neurais sao utilizadas para resolver problemas de tomada de decisao
mais complexos, como a classificacao, determinando se um conjunto de dados de entrada
pertence ou nao a uma classe. Entretanto, em sua forma inicial, o Perceptron apresentava
limitagoes em tarefas que envolviam classificacbes nao lineares, como demonstrado por

Minsky [7].

Essas restrigoes foram superadas com o surgimento do Perceptron Multicamadas
(MLP). Diferentemente do modelo simples, o MLP introduz uma ou mais camadas ocultas
entre a entrada e a saida. Nessa estrutura, todas as saidas de uma camada se conectam com
cada entrada da camada posterior, formando o que é conhecido como camadas totalmente
conectadas (fully connected). Os sinais sdo propagados camada a camada, permitindo que
a rede modele relagdes nao lineares complexas que o Perceptron original nao conseguia

resolver.

Apesar de as MLPs superarem a limitacao linear, elas apresentam sérias restrigoes
ao processar dados de alta dimensionalidade, como imagens. Em arquiteturas totalmente
conectadas, o nimero de parametros cresce exponencialmente com o aumento da pro-
fundidade e do tamanho da entrada, resultando em um custo computacional proibitivo e

dificultando a generaliza¢ao do modelo [8, 9].

2.1.2 Redes Neurais Convolucionais

As Redes Neurais Convolucionais (CNN ou Conwvolutional Neural Networks) sao
uma classe de RNAs utilizadas principalmente para o processamento de imagens, devido a
sua capacidade de lidar com dados em formato de grade (matrizes). Essas redes destacam-
se por utilizar operagoes de convolugao para a extracao de atributos, gerando os chamados

mapas de caracteristicas (Feature Maps) [4].

O processo de convolugao resulta da aplicagao de um filtro (ou kernel), que desliza
sobre a matriz de entrada. Para cada posicionamento do filtro, é realizada a multiplicacao
elemento a elemento entre os pesos do filtro e a regiao correspondente da entrada, seguida
da soma desses valores. O resultado de cada operacao é armazenado em uma matriz
resultante, denominada mapa de caracteristicas (Feature Map), conforme apresentado na

Figura 2 onde podemos ver um exemplo de convolugao com filtro (Kernel) 3x3 [10].
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Figura 2 — Convolugao com filtro.

As camadas que realizam esse processo sao chamadas de camadas de convolugao,
principais responsaveis pela extracao de caracteristicas dos dados. Além da convolucao,
as CNNs também realizam outro processo importante para a extracao das caracteristicas
chamado de pooling, que é o processo para abstrair os dados do mapa de caracteristicas

gerado pelas camadas de convolucao.
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Esse processo reduz a dimensao das entradas e resume os resultados do mapa de
caracteristicas. Um exemplo comum ¢ a técnica de maz pooling, que seleciona o maior
valor resultante de uma regiao especifica do mapa e gera uma nova saida de dimensao
menor. Essa nova matriz é formada apenas pelos valores maximos de cada regiao, como
demonstrado na Figura 3, onde podemos ver um exemplo de reducao de dimensionalidade

utilizando maz pooling e average pooling.

Mapa de Max Poolig

Caracteristicas . 112

.. 42 112 55 %0
o
Average
o 95 13 74 reons
EIEE
= o

Figura 3 — Mapa de caracteristicas.

Por fim, apés a geracao do mapa de caracteristicas com o pooling aplicado, a
matriz resultante é transformada em um vetor de uma tnica dimensao. Esse novo vetor
¢ passado como entrada para as camadas de classificagdo [11], que geralmente utilizam
camadas totalmente conectadas. Nessas camadas, a estrutura utilizada ¢ igual as MLPs,
onde cada entrada tem um respectivo peso e a saida de cada neurénio se conecta com a

entrada de cada neuronio da camada posterior.

2.1.3 Arquiteturas Profundas e Resnet

Em arquiteturas modernas de deteccao e segmentacao de objetos, o processo de
extragdo de caracteristicas é delegado a uma CNN base, denominada backbone (espinha
dorsal). O papel do backbone é transformar a imagem de entrada bruta em um conjunto
rico de mapas de caracteristicas (feature maps), que capturam desde detalhes de baixo
nivel (como bordas e cores) até estruturas seménticas complexas. A eficiéncia da detecgao
de danos em magas depende diretamente da capacidade do backbone de distinguir texturas

sutis na epiderme da fruta.

Para aumentar a capacidade de representacao de uma rede neural, a estratégia

intuitiva é aumentar sua profundidade (nimero de camadas). Entretanto, He et al.[12]
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demonstraram que o treinamento de redes excessivamente profundas enfrenta o problema
da degradacao: a medida que a profundidade aumenta, a precisdo satura e comega a
degradar rapidamente. Isso ocorre devido ao problema do desvanecimento do gradiente
(vanishing gradient), onde o sinal de erro utilizado para ajustar os pesos torna-se extre-
mamente pequeno ao propagar-se para as primeiras camadas, impedindo o aprendizado

eficaz.

Para solucionar a degradagdo em redes profundas, He et al. [12] introduziram
a arquitetura ResNet (Residual Network). A inovacdo central consiste na utilizagdo de
blocos residuais com conexdes de atalho (skip connections). Diferentemente das redes
tradicionais que tentam aprender uma fungao direta H(x), os blocos residuais aprendem

uma func¢ao residual F(x), de modo que a saida do bloco seja dada pela Equacao 2.1:

H(z)=F(z)+x (2.1)

Essa conexao de identidade (+x) permite que o gradiente flua livremente através
da rede durante o processo de retropropagacao, mitigando o problema do desvanecimento
e permitindo o treinamento de redes com centenas de camadas.A operacao F(x) + x
realiza o mapeamento de identidade, permitindo que a rede aprenda a funcao residual em
vez da funcdo original completa, além de utilizar a funcao de ativacgdio ReLU (Unidade
Linear Retificada) que basicamente transforma qualquer valor negativo em zero evitando

o desaparecimento do gradiente[12].Podemos observar essa operagao na Figura 4

X
F(x) l ReLU Identidade

F(x) + x

RelLU

Figura 4 — Estrutura de um bloco de aprendizado residual.
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Neste trabalho, utiliza-se a variante ResNet-101 como backbone. Esta arquitetura
¢ composta por 101 camadas, estruturadas através de blocos do tipo Bottleneck, que
utilizam convolugoes 1 x 1 para reduzir a dimensionalidade antes das convolucoes 3 x 3,

otimizando o custo computacional.

O bloco Bottleneck opera manipulando a dimensao de profundidade (canais) para
otimizar o processamento. O mecanismo divide-se em trés etapas sequenciais: compres-
sao, processamento e expansao. Inicialmente, ocorre a reducao da dimensionalidade via
convolugao 1 x 1. Podemos ver a estrutura da operacao na Figura 5, onde inicia com uma
convolugao 1 x 1 para reduzir a dimensionalidade (de 256 para 64 canais), seguida pela
convolugao espacial 3 x 3 e finalizando com a expansao para 256 canais, permitindo a

conexao residual [12].

[ a6 |
1Lmlu
T |
1Lmlu
| 1xl, 256 |J
+ —
relu

Figura 5 — Estrutura do bloco residual do tipo Bottleneck.

Exemplificando com uma entrada de 32 x 32 x 256, a aplicacao de 64 filtros 1 x 1
comprime a profundidade, gerando uma saida intermediaria de 32 x 32 x 64. Nesta etapa,
cada filtro realiza uma combinacao linear dos 256 canais de cada pixel. Em seguida, a
convolugao espacial (3 x 3) é executada sobre esse mapa reduzido, o que diminui drastica-
mente o custo computacional. Finalmente, ocorre a expansao, onde uma nova camada de
convolugao 1 x 1 com 256 filtros projeta os dados de volta a dimensao original, permitindo

a soma com a entrada através da conexao residual [12].

2.1.4 Evolugao do modelo R-CNN

As CNNs sao empregadas principalmente para extrair caracteristicas de imagens
que, posteriormente, serdo processadas por um classificador. No entanto, na tarefa de
deteccao de objetos, é necessario nao apenas classificar, mas também localizar o objeto na
imagem. Como uma unica imagem pode conter multiplos objetos em diferentes posigoes,
torna-se necessdria a definigdo de Regides de Interesse (Rols — Regions of Interest) para

delimitar areas com caracteristicas relevantes.
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A arquitetura R-CNN (Regions with CNN features), proposta por Girshick [13],
foi uma das primeiras a integrar CNNs com propostas de regioes. Neste modelo, utiliza-se
o algoritmo de Busca Seletiva (Selective Search) [14] para gerar milhares de propostas de
regioes por imagem. Essas propostas sao entao recortadas e processadas individualmente

por uma CNN para a extracao de caracteristicas.

Como a entrada da CNN possui dimensoes fixas, as regides propostas, original-
mente de tamanhos variados, sdo submetidas a um processo de distorgdo (warping) para
se adequarem & entrada da rede, conforme observado na Figura 6 [13]. Apds essa etapa,

a CNN extrai os vetores de caracteristicas de cada regiao.

Para a etapa final de decisdo, utiliza-se uma SVM (Support Vector Machine). Esta
técnica consiste num algoritmo de aprendizado supervisionado que classifica os dados ao
encontrar um hiperplano 6timo num espa¢o multidimensional, maximizando a margem de
separacao entre as diferentes classes [15]. Embora eficaz, a arquitetura R-CNN apresenta
limitacoes de velocidade, servindo, no entanto, como uma das principais precursoras do
modelo Mask R-CNN.

aV|ao7 nao

1
% > pessoa" sim.
|

1.imagemde 2, Extrair propostas 3. Calcular 4, Classificar
entrada de regiao (~2k) recursos da CNN regides

Figura 6 — Fluxo de processamento da arquitetura R-CNN.

2.1.5 Fast R-CNN

O Fast R-CNN apresentou mudangas significativas em sua arquitetura comparado
ao seu antecessor, o R-CNN. A principal diferenca é que a rede recebe como entrada a
imagem inteira e o conjunto de Rols simultaneamente. Diferentemente do R-CNN, onde a
busca seletiva gerava milhares de regioes e cada uma passava individualmente pela CNN

(gerando redundéncia), no Fast R-CNN a imagem é processada apenas uma vez.

No Fast R-CNN, a imagem original é processada integralmente pela CNN, gerando
um mapa de caracteristicas compartilhado. Sobre esse mapa, aplica-se a camada de Rol
Pooling, proposta por Girshick [16], que visa transformar a drea de cada Rol (que possui
tamanho varidvel) em uma dimensao de tamanho fixo (H x W). Essa técnica divide a
regiao de interesse em uma grade de sub-regioes e aplica o pooling maximo em cada uma
delas. Desta forma, extrai-se o valor mais relevante de cada se¢ao, resultando em uma

matriz de tamanho fixo, independentemente da dimensao original da proposta.
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Por fim, a rede gera duas camadas de saida, uma responsavel por realizar a classifi-
cagao do objeto na imagem usando a funcao softmax e a outra responsavel pela regressao
da bounding box, que indica onde o objeto se encontra na imagem, conforme ilustrado na

Figura 7.

Saidas: D
lllll dulimitadora

softmax regressor

Rol FC FC
poaling
camada FCs
= projecao
Conv Recurso Rol
mapa de caracteristicas vetor

Para cada Rol

Figura 7 — Arquitetura do Fast R-CNN.

2.1.6 Faster R-CNN

Apébs os avancos introduzidos pelo Fast R-CNN, um novo modelo foi proposto
com o objetivo de otimizar o processo de geragao de regides de interesse: o Faster R-
CNN. Nesse modelo, foi apresentada a RPN (Region Proposal Network), que substituiu
o uso da busca seletiva [14] na etapa de propostas de regido. Em vez de depender de um
método externo e nao treindvel, adicionou-se a arquitetura uma rede totalmente integrada,
capaz de gerar propostas diretamente a partir dos mapas de caracteristicas obtidos pelas

primeiras camadas convolucionais.

A introducao da RPN impactou significativamente o desempenho do modelo. An-
teriormente, a busca seletiva representava um gargalo computacional por ser executada na
CPU e nao utilizar os recursos de aprendizado da rede. Com a RPN integrada e utilizando
os dados do mapa de caracteristicas compartilhado (na GPU), a geragdo das propostas

tornou-se muito mais eficiente, conforme demonstrado por Ren et al.[17].

Para viabilizar a detec¢do de objetos com diferentes escalas e proporcoes, a RPN
introduz o conceito de dncoras (anchors). Em vez de tentar prever as coordenadas de
uma regiao do zero, a rede utiliza um mecanismo de janela deslizante sobre o mapa de
caracteristicas. Para cada posicao dessa janela, sao geradas multiplas caixas de referéncia

(as dncoras) com diferentes escalas e razoes de aspecto pré-definidas.

Conforme proposto por Ren et al. [17], utilizam-se tipicamente 3 escalas e 3 razoes
de aspecto (ex: 1:1, 1:2 e 2:1), totalizando k& = 9 &ncoras para cada ponto do mapa de

caracteristicas, conforme demonstrado na Figura 8.
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Figura 8 — Funcionamento da Rede de Proposta de Regiao (RPN).

Para cada ancora, a RPN prediz simultaneamente dois valores: a probabilidade de
a caixa conter um objeto e os quatro deslocamentos (offsets) necessarios para ajustar as

coordenadas da ancora & posigao real do objeto (bounding box regression).

Para treinar a rede a realizar as tarefas de classificagdo e regressao de caixas
simultaneamente, Ren et al.[17] definiram uma fungdo de perda multitarefa (multi-task
loss). O objetivo é minimizar o erro tanto na identificacdo da presenca do objeto quanto
na precisao geométrica da caixa. A fungdo de perda global para uma imagem ¢é definida

pela Equacao 2.2:

L({pi}, {t:i}) = sz reg (ti, t7) (2.2)

Nreg 5

Z Lcls p“pz + )‘
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Neste contexto, ¢ é o indice de uma ancora no minibatch e p; é a probabilidade
prevista de a ancora ser um objeto. O termo p; representa o rétulo verdadeiro (ground

truth), sendo 1 se a ancora for positiva (contém objeto) e 0 se for negativa (fundo).

O primeiro componente, L, representa a perda de classificagdo (referente a pro-
babilidade de objectness). Trata-se de uma fungdao de perda logaritmica (log loss) sobre
duas classes (objeto vs. ndo-objeto), ensinando a rede a distinguir quais dncoras estao

sobrepondo os objetos reais.

O segundo componente, Lyeg, refere-se a perda de regressao (saida boz). E fun-
damental notar que este termo é multiplicado por p;, o que significa que a regressao da
caixa s0 ¢é ativada e contabilizada quando ha, de fato, um objeto na ancora (p; = 1). Para
o célculo desta perda, utiliza-se a funcao Smooth L1 definida por Girshick et al. [16], que

¢ mais robusta a outliers do que a perda L2 tradicional (erro quadratico).

O célculo geométrico realizado pela camada de regressao nao prevé as coordenadas

absolutas, mas sim parametros de transformacao parametrizados. Sendo (z,y,w,h) as
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coordenadas do centro, largura e altura da caixa prevista, e (Z4, Yo, Wa, he) as da dncora,

a rede aprende os seguintes deslocamentos:

¢ Deslocamento de Centro:

T — Tg

Ax =

Wq ha

¢ Deslocamento de Escala:

Aw = log (£> e Ah=log <h£>
w& a

Dessa forma, o modelo aprende a ajustar a ancora fixa para que ela se encaixe

perfeitamente no objeto alvo, garantindo invariancia a escala e translagao.

2.1.7 Mask R-CNN

O framework Mask R-CNN, proposto por He et al.[18], é uma extensao direta do
Faster R-CNN. Enquanto seu antecessor possui duas saidas principais para cada objeto
candidato (uma etiqueta de classe e uma bounding box) conforme demosntrado na Figura
9, o Mask R-CNN adiciona um terceiro ramo paralelo responsavel por prever a mascara

de segmentagao do objeto (méscara binaria).

Figura 9 — Estrutura da arquitetura Mask R-CNN.

A grande inovacao desta arquitetura é o desacoplamento da segmentagao em rela-
¢ao a classificagao. O ramo da méscara gera uma matriz m X m para cada classe possivel,
aplicando uma funcao sigmoide em cada pixel, sem competir com a predicao de classes.
Isso simplifica o fluxo de processamento do modelo e permite que o treinamento ocorra

de ponta a ponta. A funcao de perda multitarefa é definida pela Equacao 2.3:

L= Lcls + Lboa: + Lmask (23)
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Onde Lys € Ly, sao idénticos aos definidos no Fast R-CNN (classificagao e re-
gressdo da caixa), e L. ¢ a entropia cruzada binaria média, calculada pixel a pixel,

considerando apenas a mascara associada a classe verdadeira (ground truth) [18].

Para gerar essas méscaras preservando o arranjo espacial dos pixels, o Mask R-
CNN utiliza uma Rede Totalmente Convolucional (FCN) [19] aplicada a cada Regido de
Interesse. No entanto, para que isso fosse possivel com precisao, foi necessario corrigir um

problema estrutural das arquiteturas anteriores: a quantizacao.

Os modelos Fast e Faster R-CNN utilizavam a camada de Rol Pooling, que reali-
zava arredondamentos (quantizagao) nas coordenadas flutuantes para ajusta-las a grade
de caracteristicas. Embora inofensivos para a deteccao de caixas, esses arredondamentos
causavam um desalinhamento pixel a pixel, prejudicando a segmentacao. Para solucionar

isso, [18] introduziram a camada Rol Align.

Diferentemente do Rol Pooling, o Rol Align elimina a quantizacao das coordena-
das. A técnica utiliza interpolacao bilinear para calcular os valores exatos das caracte-
risticas em quatro pontos de amostragem dentro de cada célula da Rol, garantindo um
alinhamento espacial preciso entre a entrada e a mascara de saida, fator crucial para a

deteccao de avarias pequenas ou irregulares na superficie da maca.

2.2 Trabalhos Correlatos

A aplicacao de Visao Computacional na agricultura tem passado por uma transfor-
magcao significativa nas tltimas décadas. Historicamente, a inspecao de qualidade dependia
de processos manuais ou de técnicas classicas de processamento de imagens, que utiliza-
vam filtros de cor e limiares fixos. No entanto, essas abordagens mostravam-se limitadas
em ambientes nao controlados ou diante de defeitos com baixa variagdo croméatica. Re-
centemente, o estado da arte migrou para solugdes baseadas em Aprendizado Profundo
(Deep Learning), especificamente Redes Neurais Convolucionais, devido & sua robustez e

capacidade de generalizacdo na detecgao de padroes complexos em frutas e vegetais.

Neste cenario, diversas arquiteturas tém sido propostas para a deteccao de avarias.
Uma das abordagens mais relevantes recentemente foi apresentada por Hou et al. [20].
Neste estudo, os autores utilizaram o modelo Faster R-CNN para identificar machucados
recentes e sutis em macas. Vale ressaltar que, para viabilizar a deteccao dessas lesoes de
baixa percepcao a olho nu, os autores recorreram a imagens hiperespectrais, tecnologia

que realga as regides danificadas em faixas espectrais especificas.

O uso dessa tecnologia evidencia o grau de desafio técnico deste trabalho, que
propde detectar avarias utilizando apenas imagens convencionais (RGB). Para compensar
a auséncia de dados espectrais e conseguir diferenciar danos sutis de manchas naturais,

esta pesquisa avanca ao adotar o backbone ResNet-101, uma rede mais profunda e capaz



34

de extrair caracteristicas semanticas mais complexas do que a ResNet-50 utilizada por
Hou et al. [20].

Além da questdao do tipo de imagem usada, ha uma diferenca fundamental na
arquitetura de saida. Embora o método de Hou et al. [20] tenha sido eficaz na localizagao,
a saida limita-se a bounding bozres. Essa caracteristica representa uma restricao técnica

significativa, pois a caixa engloba tanto a area danificada quanto parte integra da casca.

Nesse contexto de uso de imagens convencionais, destaca-se o trabalho de El Akrou-
chi et al. [21], que aplicaram o Mask R-CNN para a deteccao e segmentagao de paniculas
de quinoa. O desafio central do estudo residiu na complexidade visual do ambiente de

campo, caracterizado pela baixa distin¢ao entre o objeto e a vegetacao de fundo.

Além de validarem o uso de imagens RGB, os autores conduziram uma avali-
acao comparativa crucial utilizando trés backbones distintos: ResNet-50, ResNet-101 e
EfficientNet-B7. Essa analise demonstrou empiricamente como a variagdo na arquitetura
e na profundidade da rede influencia a capacidade de aprendizado e o desempenho final
da deteccao. Para a presente pesquisa, esses resultados sao relevantes, pois corroboram
a importancia de selecionar um backbone robusto (como a ResNet-101) para lidar com

tarefas de deteccao em cenarios onde as caracteristicas visuais sao sutis ou complexas.

Um dos principais desafios no treinamento de redes neurais é a escassez de dados
anotados, especialmente em cenarios onde as caracteristicas a serem analisadas sdo sutis.
Contudo, conforme demonstrado por Osorio et al. [22], essa limitagdo pode ser mitigada

através de técnicas como transfer learning e estratégias de anotacao progressiva.

Em seu trabalho, os autores aplicaram o modelo Mask R-CNN para a detecgao e
contagem de culturas de alface e batata. O estudo utilizou um dataset reduzido, dividido
em duas categorias de anotacao: um conjunto com demarcagoes simples e outro com

delimitacoes refinadas.

Os experimentos iniciais utilizaram os pesos pré-treinados do dataset COCO [23].
Ao treinar o modelo apenas com as anotagoes simples, os resultados mostraram-se in-
satisfatorios. Em contrapartida, o uso direto das anotacoes refinadas proporcionou uma

melhora significativa no desempenho.

Além disso, Osorio et al. [22] exploraram uma estratégia de transfer learning em
dois estagios. Inicialmente, a rede foi treinada com o dataset de anotacoes simples, par-
tindo dos pesos do COCO. Subsequentemente, utilizaram-se os pesos resultantes dessa
etapa para iniciar um novo ciclo de aprendizado com as anotacoes refinadas. Essa abor-
dagem superou o desempenho do modelo treinado exclusivamente com os dados refinados
desde o inicio, validando a eficacia do reaproveitamento de anotagoes menos precisas como

uma etapa intermediaria de aprendizado.

Por fim, é relevante ressaltar a dimensao reduzida dos conjuntos de dados utiliza-
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dos: apenas 347 imagens para o dataset simples e 124 para o refinado. Esses resultados
evidenciam dois pontos cruciais, primeiro, é possivel obter bons resultados mesmo com da-
tasets pequenos, e segundo, a qualidade das anotac¢oes tem maior impacto no desempenho

final do que a mera quantidade de dados.

Corroborando a viabilidade de aplicagdo em datasets reduzidos, Zhang et al. [24]
obtiveram éxito na extracao de caracteristicas fenotipicas de alfaces utilizando o Mask R-
CNN. Embora os autores tenham adotado um backbone distinto, seus resultados alinham-

se as conclusoes de Osorio et al. [22] quanto a eficdcia do modelo.

Para superar a limitacao quantitativa das imagens originais, os autores emprega-
ram técnicas de aumento de dados (data augmentation). Essa estratégia permitiu expandir
artificialmente o conjunto de treinamento através de transformacoes nas imagens, garan-

tindo maior variabilidade e robustez ao modelo.

Outro diferencial metodolégico importante foi a adogao da validagdo cruzada (k-
fold cross-validation) dividida em 5 partes (k = 5). Essa estratégia permitiu maximizar o
uso dos dados disponiveis e mitigar possiveis vieses de selecao, evitando que a avaliagao

do modelo ficasse restrita a um conjunto fixo de treinamento e teste.
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3 METODO DE PESQUISA

3.1 Aquisicao e Tratamento de Dados

A aquisicao das imagens foi realizada através de fotografias digitais com resolucao
original de 3000 x 4000 pixels. Posteriormente, estas imagens foram submetidas a um pré-
processamento, sendo redimensionadas para a resolucao de 512 x 683 pixels e padronizadas
no formato PNG.

As coletas foram conduzidas em ambiente real de comercializagao (mercados), sob
condigoes de iluminacao artificial variada. Um fator relevante deste conjunto de dados
é a complexidade do cenario, que apresenta um fundo variavel composto por elementos
ruidosos como chao, prateleiras e outras frutas adjacentes, simulando as condigoes reais

de aplicacdo do modelo.

O dataset final é constituido por 300 imagens, que variam desde magas com avarias
severas e visiveis até frutos aparentemente sadios. Além disso, as amostras apresentam
diversidade na coloracao da epiderme, incluindo tons de verde, amarelo e vermelho. Para
garantir a robustez estatistica dos experimentos, a particdo dos dados nao seguiu uma
divisdo estdtica; em vez disso, adotou-se a técnica de validagao cruzada (k-fold cross-
validation). Essa abordagem permite utilizar a totalidade dos dados para treinamento e

validagdo em diferentes iteragoes, mitigando vieses de selecao.

Para a definicdo das categorias de deteccao, o modelo foi configurado para um
problema de classe tinica. Desta forma, definiram-se apenas duas classes, a classe 0, re-
presentando o fundo da imagem (background), e a classe 1, correspondente ao objeto de

interesse, ou seja, os danos fisicos presentes na epiderme da maca.

A geragao das mascaras de segmentagao (ground truth) foi realizada manualmente,
utilizando uma ferramenta de anotacao desenvolvida especificamente para esta pesquisa.
O software permite a demarcagao precisa através de poligonos, ajustando-se aos contornos
irregulares das avarias. Para garantir a compatibilidade com o treinamento do modelo, a
ferramenta foi projetada para exportar as anotagoes seguindo rigorosamente o padrao de
dados do VGG Image Annotator (VIA), gerando arquivos no formato JSON contendo as

coordenadas espaciais de cada regiao.

Para garantir a diversidade das amostras e simular as técnicas de aumento de dados
(data augmentation), as operagoes de rotacao e inversao foram realizadas manualmente no
momento da captura. Esta estratégia envolveu a variacao fisica da orientacao da fruta e da
camera em cada registro, assegurando que o modelo fosse exposto a diferentes perspectivas

da macga e dos danos, aumentando a capacidade de generalizagao da rede.
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Também foi aplicada essa estratégia de forma artificial, gerando um novo dataset
com tamanho 5x maior. Esse dataset foi utilizado em um experimento especifico a fim de

validar a melhoria dos resultados utilizando essa técnica.

3.2 Configuracao do modelo de treinamento

O treinamento do modelo de rede neural foi baseado na arquitetura Mask R-CNN,

que é reconhecida por sua segmentacao de instancias.

O modelo Mask R-CNN, utilizando o ResNet-101 como backbone, foi inicializado
com pesos pré-treinados no grande dataset COCO [23]. Esta abordagem de transfer lear-
ning € crucial para otimizar o processo de convergéncia, reduzindo o tempo de treinamento
necessario e auxiliando o modelo a alcancar alto desempenho com um dataset de dimensao

reduzida (300 imagens).

Em funcao dessa estratégia de reaproveitamento de conhecimento, a taxa de apren-
dizado (Learning Rate - LR) foi ajustada dinamicamente. Utilizou-se um LR mais elevado
de 0.001 nas etapas iniciais (ajuste apenas das camadas de predigdo), enquanto um LR
significativamente menor, de 0.0001, foi aplicado nos ciclos de fine-tuning que envolveram
o treinamento de todas as camadas. Essa reducao final visa preservar o conhecimento
robusto ja capturado pelo ResNet-101, assegurando que as modificagoes nos pesos sejam

feitas de forma cautelosa e incremental.

O processo de otimizacao foi conduzido utilizando o algoritmo Stochastic Gradient
Descent (SGD). Esta escolha é amplamente adotada em arquiteturas R-CNN devido a

sua eficacia na navegacao pelo espaco de perdas e sua comprovada robustez.

Foi configurado um Momentum de 0.9 (LEARNING_MOMENTUM), que é cru-
cial para acelerar a convergéncia em direcoes relevantes e amortecer as oscilagoes do
gradiente. Decaimento de Peso ( Weight Decay): Aplicou-se um valor de 0.0001. Este pa-
rametro atua como um termo de regularizacdo L2, que penaliza pesos muito grandes,

mitigando o risco de sobreajuste (overfitting) nos dados.

O tamanho do lote (batch size) foi definido como uma (1) imagem por iteragao. O
nimero total de iteracoes por época foi estabelecido em 240, o que corresponde a 80% do
dataset total, assegurando que o conjunto de treinamento fosse utilizado integralmente em
cada ciclo. Paralelamente, foram definidas 60 etapas de validagao, garantindo que todas
as imagens do conjunto de validagao fossem avaliadas ao final de cada época. Por fim, o
treinamento foi definido para 100 épocas, a fim de monitorar e avaliar detalhadamente o

comportamento da funcao de perda e a convergéncia do modelo.

O modelo final é treinado para minimizar o valor agregado (L), conforme a Equagao
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3.1:

L = Lgpn,,. + Lrpn,,, + LirenN,,, + Lyvrenn,,, + LvroNN,,, (3.1)

Conforme a configuracao adotada, o peso de contribuicao para cada um dos cinco
componentes de perda foi ajustado para 1.0, garantindo que a rede atribua igual impor-
tancia a todas as tarefasLppn,,. € Lrpy,,, perdas pela classificacao e ajuste da caixa das
propostas de regiao.Lyrenn,,. € Lymrenn,,, pPerdas pela classificacao final do objeto e
pelo refinamento das coordenadas da caixa delimitadora.Ly ronn,,, ., Perda pela segmen-
tagao do objeto, calculada separadamente para cada classe (para evitar competigao entre

as classes na predi¢ao da méascara).

3.3 Meétricas

A avaliacao do desempenho de modelos de segmentacao de instancias exige mé-
tricas robustas que combinem precisao na classificacao e acuracia na localizacao espacial.
Para este trabalho, as métricas escolhidas foram selecionadas para refletir a capacidade

do modelo de identificar o dano e segmentar seu contorno de forma precisa.

As métricas utilizadas para a andalise de desempenho incluem o Intersection Ouver
Union (IoU), o F1-Score e, como métrica agregada principal, o Mean Average Precision
(mAP). A Fungdo de Perda total do Mask R-CNN sera monitorada durante o treinamento

como uma ferramenta de diagnostico para avaliar a convergéncia e o ajuste dos pesos.

3.3.1 Intersection Over Union

Essa métrica demonstra o nivel de precisao da localizacao do objeto detectado
em relacao a area de referéncia do conjunto de validacao. Como podemos ver na Figura
10 O IoU ¢é a razdo entre a Area de Interseccio, (a de sobreposi¢do das areas em azul
escuro), e a Area de Unido (o espago total abrangido pelas méscaras real e predita). A
area delimitada pela borda verde representa a mascara real (Mg), e a drea delimitada

pela borda vermelha representa a mascara predita (Mp).

) area de sobreposicao
TOU = — — =
area de uniao

Figura 10 — Representagao do calculo do Intersection Over Union (IoU).
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A Intersection Over Union (IOU) é uma métrica fundamental utilizada no con-
texto de deteccao de objetos para avaliar a similaridade e a qualidade da correspondéncia
entre a area detectada (bounding box prevista, BP) e a drea real do objeto alvo ground
truth (bounding box real, BR). Essencialmente, a IOU verifica quao bem a localizagdo e o

tamanho da caixa prevista se alinham com a caixa real.

O calculo da métrica IoU para Mascaras em vez de bounding boxes consiste em
identificar primeiramente a area de sobreposi¢ao, ou interseccao, entre as duas mascaras,
sendo elas a predita (Mp) e a real (Mg). Na sequéncia, determina-se a drea total ocupada
pelas duas mascaras juntas, denominada unido. A métrica é entdo obtida através da
divisao da area da interseccao pela area da unido, resultando em um valor adimensional

que varia entre 0 e 1.

Um resultado igual a 1 indica uma correspondéncia perfeita, enquanto o valor 0
denota que as mascaras nao se interceptam em nenhum ponto. Quanto mais préximo o
coeficiente estiver de 1, superior é considerada a qualidade da segmentacao. E importante
notar que essa comparacao s6 possui validade estatistica quando realizada entre mascaras

reais e predigoes pertencentes a mesma classe.

A aplicacdo do IoU é fundamental para classificar uma deteccdo como correta
baseando-se em um limiar de corte, ou threshold. Um limiar préximo de 1, como 0.75,
impoe um critério restritivo que exige sobreposicao quase total para validar o acerto.
Em contrapartida, limiares mais proximos de 0 oferecem maior flexibilidade, aceitando
detecgbes com sobreposigoes parciais entre a predigao e o valor real [25]. Por fim, para
uma analise global do desempenho do modelo, utiliza-se a média do IoU de todas as
imagens (mloU), avaliada em conjunto com a confiabilidade da regido delimitada, a qual

¢ mensurada submetendo as predigoes a variadas faixas de limiares.

3.3.2 Average Precision

O calculo das métricas de desempenho baseia-se inicialmente na qualidade da

localizagdo, mensurada pelo Intersection over Union (IoU).

Para definir se uma detecgao é valida, aplica-se um limiar (threshold, geralmente

= 0.5). Se o IoU calculado for superior a este limiar, a detecgao é considerada correta.
Em cenarios onde o modelo gera multiplas predi¢oes para um mesmo objeto, considera-se
aquela com a maior intersec¢ao valida, conforme ilustrado na Figura 11, onde é composta
por trés imagens: a imange mais a esquerda mostra a predicdo do modelo de duas areas
em ciano e vermelho, a mais a direita mostra a mascara real em vermelho, e no meio, a

intersecao entre a predi¢do que cobriu a maior area da mascara real, destacada em verde.
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Figura 11 — Exemplo de selecao da melhor intersecao de IoU para validagao da deteccao.

Com base nesse critério de IoU, as predig¢oes sao classificadas em trés categorias:

« Verdadeiro Positivo (VP): O modelo detecta um dano existente com precisao de

localizagao suficiente (IoU > «).

« Falso Positivo (FP): O modelo prevé um dano onde nao existe (alarme falso) ou a

localizacao é imprecisa (IoU < «).

o Falso Negativo (FN): Existe um dano real na imagem, mas o modelo falha em

detecta-lo.

Com base nessa classificagdo, obtém-se duas métricas essenciais: a Precisao (Equa-
¢a0 3.2), que define o grau de certeza das detecgoes geradas pelo modelo, e o Recall (Equa-
¢ao 3.3), que demonstra o quanto o sistema foi capaz de cobrir todas as instdncias reais

presentes na imagem.

. VP
Precisao = m (32)
VP
Recall = m—m (33)

Para sintetizar o desempenho do modelo, utiliza-se o Average Precision (AP). O
calculo desta métrica envolve ordenar todas as predi¢oes do conjunto de validacao de forma
decrescente pelo score de confianga. Com essa lista ordenada, calculam-se a Precisao e o

Recall acumulados a cada nova predicdo, construindo a Curva Precisdo-Recall (P-R).

A Average Precision (AP) corresponde a area sob esta curva. Essa area é calcu-
lada através de uma soma discreta, ponderando a precisao em cada incremento de recall.

Matematicamente, o AP ¢é definido pela equagao 3.4.

AP = 3 (Re - Rit) % Py (3.4)

k=1
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Onde

e n é o numero total de predicoes.

e R, e P, sao, respectivamente, o Recall e a Precisao da predicao k k.

3.3.3 F1-Score

Enquanto a Precisdo e o Recall fornecem visoes isoladas sobre a confiabilidade e
a sensibilidade do modelo, muitas vezes é necessaria uma métrica tnica que sintetize o

equilibrio entre ambas. Para isso, utiliza-se o F1-Score (ou Medida-F).

Conforme definido por Sasaki et al. [26], o F1-Score é a média harmonica entre a
precisao e o Recall. A escolha pela média harmonica, em vez de usar a média aritmética
simples, deve-se a sua propriedade de penalizar valores extremos. Isso significa que, para
o F'1-Score ser alto, tanto a Precisao quanto o Recall precisam ser altos simultaneamente.
Se uma das métricas for muito baixa (ex.: o modelo encontra todos os danos, mas gera

muitos alarmes falsos), o F1-Score caird drasticamente.

Matematicamente, a métrica é definida pela Equagao 3.5:

Fl— 9 Precisao x Recall (3.5)

Precisdao + Recall

Onde:

o O valor resultante varia entre 0 e 1;

e Um valor préoximo de 1 indica que o modelo possui excelente precisao e robustez na

detecgao (baixo indice de falsos positivos e falsos negativos).

O F1-Score ¢é calculado para um limiar de IoU especifico (geralmente 0.5), servindo
como um indicador pontual da eficiéncia do modelo em equilibrar a detec¢ao correta dos

danos sem excesso de predig¢oes incorretas.
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4 EXPERIMENTOS

4.1 Execucao do Treinamento em Cenario com Dataset Original

Para avaliar o impacto da profundidade do ajuste fino (fine-tuning) e da taxa
de aprendizado na deteccao de danos, foram conduzidos dois experimentos independen-
tes. Em ambos os cenarios, a rede foi inicializada com os pesos pré-treinados do dataset
MS COCO [23], garantindo que os modelos partissem da mesma base de conhecimento
genérico, sem que houvesse transferéncia de aprendizado sequencial entre as etapas expe-

rimentais.

Visando assegurar a robustez estatistica dos resultados e mitigar possiveis vie-
ses de sele¢ao, a metodologia de valida¢ao cruzada (k-fold cross-validation) foi aplicada
rigorosamente em ambos os experimentos. Para cada cendrio, o conjunto de dados foi

particionado em k£ = 5 subconjuntos distintos.

Consequentemente, o ciclo de treinamento foi realizado cinco vezes para cada confi-
guracao de modelo, alternando-se os conjuntos de treinamento e validagao a cada iteracao.
Desta forma, os resultados finais de AP50 e AP75 apresentados neste trabalho nao refletem
uma execugao isolada, mas sim a média aritmética obtida através das cinco validagoes,

oferecendo uma estimativa confiavel e imparcial da capacidade de generalizacao da rede.

4.1.1 Primeiro cenario experimental

Denominado Treinamento das Camadas de Predigdo, o processo restringiu-se ex-
clusivamente as camadas superiores da rede, conhecidas como heads. Estas camadas sao
responsaveis pela proposta de regides, classificacao e geragdo das méscaras finais. Nesta
configuragao, os pesos do backbone ResNet-101 foram mantidos congelados (frozen), impe-
dindo a atualizacao dos parametros das camadas extratoras de caracteristicas profundas.

Para esta etapa, definiu-se uma taxa de aprendizado (Learning Rate) de 0.001.

O valor mais elevado justifica-se pela necessidade de ajustar rapidamente os pesos
das novas camadas, que sao inicializados aleatoriamente, sem o risco de degradar as ca-
racteristicas extraidas pelo backbone estatico. O objetivo principal deste experimento foi
verificar se as caracteristicas genéricas extraidas pela ResNet-101 seriam suficientes para

descrever os danos nas magas, ajustando apenas a camada final de decisao.

4.1.2 Segundo cenario experimental

Neste cenario, realizou-se o treinamento completo da Rede, consistindo na atua-

lizagdo de toda a arquitetura. Diferentemente do anterior, todas as camadas foram des-
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congeladas (unfrozen) desde o inicio do processo, permitindo a propagagao do gradiente

e a atualizacdo dos pesos em toda a profundidade da rede.

Para este experimento, a taxa de aprendizado foi reduzida para 0.0001. Essa re-
ducao constitui uma medida de seguranca essencial no fine-tuning profundo, visando pre-
servar o conhecimento prévio do backbone enquanto se realizam ajustes finos e cautelosos
nas caracteristicas semanticas. O objetivo central foi permitir que a rede aprendesse pa-
droes especificos da textura e das bordas dos danos, que sao muito diferentes dos objetos
comuns encontrados no dataset COCO, integrando esse conhecimento desde as camadas

base até a saida.

4.2 Execucgao do Treinamento em Cenario com Dataset Expan-
dido

Nesta etapa experimental, o foco deslocou-se para a avaliagao do impacto do vo-
lume de dados no desempenho do modelo. Para isso, utilizou-se o conjunto de dados
expandido artificialmente, gerado através das técnicas de aumento de dados (data aug-
mentation) detalhadas na metodologia, tais como rotagao e espelhamento. Assim como
nos cenarios anteriores, a rede foi inicializada carregando os pesos pré-treinados do dataset

MS COCO, garantindo uma base solida de extracao de caracteristicas.

A estratégia de treinamento adotada para este cenario consistiu na liberacao de
todas as camadas da rede para atualizacdo desde o inicio do processo. Contudo, dife-
rentemente do ajuste fino realizado no dataset original, a taxa de aprendizado (Learning
Rate) foi configurada em 0.001. Esta escolha visa explorar a capacidade de convergéncia
da rede diante de uma maior diversidade de amostras, mantendo uma taxa de atualizacao

de pesos mais agressiva para o treinamento da arquitetura completa.

Devido ao aumento substancial no nimero de imagens disponiveis, os parametros
de duragao da época foram ajustados proporcionalmente para assegurar que todo o con-
junto de dados fosse processado a cada ciclo. Desta forma, definiram-se 1440 etapas de
treinamento e 360 etapas de validagao por época. Esse dimensionamento garante a cober-
tura integral das variagoes sintéticas e originais, permitindo um monitoramento preciso

da funcgao de perda e das métricas de avaliacao ao longo do treinamento.

Vale ressaltar uma alteragao metodologica especifica para este cenario. Diferente-
mente dos experimentos anteriores, nao foi aplicada a técnica de validagao cruzada (k-fold
cross-validation). Esta decisdo justifica-se pelo aumento substancial no volume de dados

e, consequentemente, na carga computacional exigida.

Considerando que o dataset expandido aumentou o nimero de etapas por época
para 1440, a execucao de cinco ciclos completos de treinamento (como exigido pelo k = 5)

tornaria o tempo de processamento inviavel dentro do escopo deste trabalho. Por isso,
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optou-se por uma divisao fixa entre treino e validagao (80% para treinamento e 20% para

validacao).
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5 RESULTADOS

Neste capitulo, sao apresentados e discutidos os resultados experimentais obtidos
na detecgao e segmentacao de danos em macas. A analise esta estruturada de acordo com
os cenarios definidos na metodologia, primeiramente, avalia-se o desempenho no cenario
com dataset original, comparando as estratégias de treinamento das camadas de topo

(head) versus o modelo (all), com validagao cruzada (k-fold).

Posteriormente, analisam-se os impactos do aumento de dados (data augmenta-
tion) no cenario com dataset expandido. Por fim, realiza-se uma anélise qualitativa visual

das mascaras geradas para validar a aplicabilidade do modelo.

Apés o ciclo de treinamento, obtiveram-se os resultados da funcao de perda para
os conjuntos de treino e validagdo. Inicialmente, analisa-se o resultado do experimento

com k-fold mantendo o congelamento (freezing) dos pesos, treinando apenas as camadas
heads.

Pode-se observar na Figura 12 que tanto a perda de treino (loss) quanto a de
validagao (wal loss) iniciaram com valores préximos a 1.5. Porém, com o avango das
épocas, as curvas distanciaram-se progressivamente. Embora a perda de validagao tenha
reduzido nas etapas iniciais, nota-se que, apos a época 20, ela volta a crescer gradualmente,

a primeira vista, indicando uma dificuldade de generalizacao do modelo.

Performance Média (5 K-Folds) - Fase: HEADS (Treinamento Inicial)
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Figura 12 — Curvas de aprendizado da fun¢ao de perda durante o treinamento do modelo

head.

Ao decompor os componentes da funcao de perda, torna-se possivel analisar deta-

lhadamente o comportamento da convergéncia. A Figura 13 demonstra que, no conjunto
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de treinamento, todas as perdas convergem gradualmente, conforme esperado.

HEADS: Atributos de TREINO (Média % Std)

0.6 1 Atributos

= RPN_CLASS
= RPN_BBOX
—— MaskRCNN_CLASS
0.5 —— MaskRCNN_BBOX
= MaskRCNN_MASK

Loss (Média dos 5 K-Folds)
] o
W b

o
Y

0.14
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Figura 13 — Curvas de aprendizado dos elementos que compdem a perda total de treina-
mento do modelo head.

Entretanto, o cenario de validacao apresentado na Figura 14, revela um compor-
tamento distinto. Observa-se que as perdas de classificacdo e regressao (bounding bozx)
convergiram levemente nas etapas iniciais e, em seguida, estagnaram. Em contrapartida,
a perda da mascara convergiu levemente no inicio, mas logo passou a divergir gradual-

mente.

HEADS: Atributos de VALIDAGAO (Média + Std)
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Figura 14 — Curva de aprendizado dos elementos que compoem a perda total de validacao
do modelo head.

Essa disparidade permite concluir que, embora o modelo mantenha uma boa pre-

cisao na localiza¢ao da area do dano (validada pela estabilidade da mrenn bbox loss),
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ele perde progressivamente a capacidade de segmentacao precisa. Ou seja, indicando que
com o avan¢o do treinamento, a rede falha em segmentar com precisdao a mascara real
de validacao. Porém devemos levar em consideracao que a proporc¢ao de tamanho dos da-
nos referentes a imagem sao relativamente pequenos, fazendo com que qualquer variacao

minima entre a mascara real e a predicdo do modelo elevem o erro da mascara.

Prosseguindo para a anélise do treinamento completo do modelo (All), observa-se
na Figura 15 um padrao comportamental similar ao cenario anterior, caracterizado pela
divergéncia entre as curvas de treino e validacao. Contudo, uma diferenca crucial reside
na magnitude dos valores. O treinamento comecou com perdas abaixo de 1.0, o que sugere

um ajuste rapido do modelo ao conjunto de dados do que o modelo anterior.

Performance Média (5 K-Folds) - Fase: ALL LAYERS (Fine Tuning)
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Figura 15 — Curvas de aprendizado da fun¢ao de perda durante o treinamento do modelo
all.

Embora a perda de valida¢ao (val loss) do modelo All tenha apresentado cres-
cimento gradual conforme o avanco das épocas, seus valores absolutos mantiveram-se
majoritariamente abaixo de 1.5, estado que correspondia apenas ao inicio do treinamento
no cenario do modelo Head. Isso sugere que o descongelamento das camadas profundas

permitiu refinar a extragao de caracteristicas, resultando em um erro final menor.

Decompondo o loss e wval loss, podemos rever o mesmo cenario que do modelo
Head, a perda no treinamento convergiu gradualmente sem problemas, porém com valores
iniciais menores que no treinamento do modelo Head. O mesmo comportamento ocorre
com a perda de validacao, apresentando valores absolutos mais baixos, mas mantendo a

tendéncia de crescimento da perda da mascara, como podemos ver nas Figuras 16 e 17.
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ALL LAYERS: Atributos de TREINO (Sem RPN Class)
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Figura 16 — Curvas de aprendizado dos elementos que compoem a perda total de treino
do modelo all (sem o RPN Class loss).

Nota: O componente RPN Class loss foi suprimido do grafico pois apresentou valores discrepantes
(outliers) em algumas épocas, o que distorcia a escala e impossibilitava a visualizagdo correta dos
demais elementos.

ALL LAYERS: Atributos de VALIDAGAO (Média + Std)
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Figura 17 — Curvas de aprendizado dos elementos que compoem a perda total de validacao
do modelo all.

A andlise das curvas de perda do modelo treinado com o dataset aumentado, deno-
minado de Ezpanded, revela uma evolugao substancial. A perda de validacao estabilizou-se
em patamares inferiores a 0.8 como demonstrado na Figura 18, contrastando com os ce-
narios anteriores, onde o modelo Head atingiu valores préximos a 1.5 e o modelo All
aproximou-se de 1.25. Essa reducdo drastica na perda de validacao representa um ga-
nho de desempenho de 53,3% quando comparado ao cenério base (Head), evidenciando

a eficacia do aumento de dados na adaptabilidade do modelo.
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Figura 18 — Curvas de aprendizado da func¢ao de perda durante o treinamento do modelo
expanded.

A figura destaca a época 37 como o ponto de minima validagdo, onde a perda de treina-
mento atingiu 0.4926.

A decomposicao do erro de validagao, apresentada na Figura 19, revela que o
componente de maior impacto foi a perda de regressio das propostas de regiao (RPN
Box Loss). As perdas de classifica¢ao estagnaram, apresentando uma leve divergéncia nas
épocas finais, mas mantiveram-se majoritariamente abaixo de 0.1. O destaque principal,

contudo, reside nas perdas de Bounding Box e da Mascara, que inicialmente convergiram
gradualmente e estabilizaram.

ALL LAYERS: Atributos de VALIDAGAO (Média * Std)
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Figura 19 — Curvas de aprendizado dos elementos que compoem a perda total de validagao
do modelo expanded.
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Ao analisar as curvas de perda de treinamento na Figura 20, observou-se uma
divergéncia sequencial no treinamento: a partir da época 40, a perda de classificacao
(MaskRCNN CLASS) desestabilizou-se, seguida pelo colapso da RPN (RPN CLASS)
apés a época 60 e da regressao das caixas (MaskRCNN BBOX) ap6s a época 80. Essa
instabilidade deve-se a taxa de aprendizado de 0.001, que se mostrou agressiva para a
atualizagao simultanea de toda a rede. Portanto, a andlise restringi-se as épocas estaveis

anteriores a esses eventos.

ALL LAYERS: Atributos de TREINO (Média + Std)

10 Atributos
= RPN_CLASS

—— RPN_BBOX
—— MaskRCNN_CLASS
—— MaskRCNN_BBOX
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Figura 20 — Curvas de aprendizado dos elementos que compdem a perda total de traina-
mento do modelo ezpanded.
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Avancando para a analise quantitativa, apresenta-se a comparacao do desempenho
dos modelos em relagdo as métricas estabelecidas. As Figuras 21, 22 e 23 apresentam
os resultados obtidos em cada época para as métricas: Average Precision (AP@50) e
F1-Score@50 (ambas com threshold de 0.5), além da média de interse¢do sobre unido

(mloU).
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Figura 21 — Curvas de Average Precision (AP) calculadas com threshold de 0.5.

Comparativo: F1 Score @ 0.50
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Figura 22 — Curvas de F1I score (F1) calculadas com threshold de 0.5.



o4

Comparativo: Mean loU (Puro)
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Figura 23 — Curvas de mloU média de interse¢ao sobre uniao

Conforme detalhado na Tabela 1, o modelo treinado com o dataset expandido
adaptou-se melhor do que as abordagens anteriores. Enquanto o modelo Head (Freezing)
estagnou com um mloU de 0.6129 e o All (Unfreezing) atingiu 0.6441, o modelo Ezpan-
ded alcangou a marca de 0.7059, demonstrando maior capacidade de segmentacao. Vale
ressaltar que, para o modelo Fzxpanded, os dados reportados na tabela foram extraidos
exclusivamente das épocas de estabilidade numérica, ignorando os picos de divergéncia
causados por explosoes de gradiente, a fim de garantir uma avaliacao mais fiel do potencial
da rede.

Tabela 1 — Comparativo detalhado dos melhores resultados obtidos por métrica e a res-
pectiva época de ocorréncia para cada modelo.

Head (Freezing) All (Unfreezing) Expanded
Métrica Valor Ep. Valor Ep. Valor Ep.
AP@50 0.6953 28 0.7737 20 0.8757 18

AP@75 0.2205 45 0.2681 38 0.3139 04
F1@50 0.7227 48 0.7899 80 0.8735 30
F1@75 0.3359 79 0.3882 91 0.4269 25
mloU 0.6129 22 0.6441 12 0.7059 27

Nota: Valores em negrito indicam o melhor desempenho. "Ep."refere-se a época de treinamento onde o

valor méximo foi registrado. Para o modelo FExpanded, os valores foram extraidos apenas das épocas em
que nao houve explosdes de gradiente.
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Para a andlise qualitativa das segmentacoes, as Figuras abaixo apresentam um
comparativo visual entre as mascaras preditas e a anotagao real (ground truth). A selegao
dos pesos para a geracao dessas inferéncias baseou-se estritamente no melhor desempenho

de segmentagao obtido.

Para os modelos treinados com validagao cruzada, isolou-se o subconjunto (fold)
de maior rendimento: no cenario Head, utilizou-se o Fold 4 na época 22 (mloU = 0.7051);
no cendrio All, selecionou-se o Fold 4, com pico de desempenho na época 13 (mlIoU =
0.7255). J& para o modelo Expanded, o melhor resultado estavel foi registrado na época
27 (mIoU = 0.7059).

Na Figura 24 podemos observar o comparativo visual de segmentacdo. A ima-
gem original apresenta o ground truth com duas méscaras reais destacadas em ciano e
vermelho. As demais imagens ilustram a capacidade de deteccao e o delineamento das

mascaras geradas pelos modelos Head, All e Fxpanded para estas mesmas instancias.

Original (Ground Truth) HEAD (Transfer Leaming)

ALL (Fine-Tuning) EXPANDED (Dataset Aumentado)

area aplle 0 75

@ aplle 1.000
%

Figura 24 — Predicao 1 dos modelos Head, All e Expanded em comparacao com a mascara
real.
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Na Figura 25 observamos o comparativo de robustez a sombras. O modelo Head
gerou um falso positivo (mascara ciano) ao confundir a sobra entre o dedo e a maga com
um defeito. Os modelos All e Expanded realizaram a detecgao correta, ignorando sobra e

segmentando apenas o dano real (vermelho).

Original (Ground Truth) HEAD (Transfer Learning)

danage area_aplie 0.606

ALL (Fine-Tuning) EXPANDED (Dataset Aumentado)

1‘.

aredaplle 0,972 &

Figura 25 — Predigao 2 dos modelos Head, All e Expanded em comparacao com a mascara
real.
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E por fim na Figura 26 visualizamos o comparativo de detec¢ao. Todos os modelos
detectaram o defeito, porém o modelo Frpanded apresentou uma capacidade de generali-
zagao superior, demonstrando maior precisao no delineamento da curvatura do dano em

relagao aos modelos Head e All

Original (Ground Truth} HEAD (Transfer Learning)

ALL (Fine-Tuning) EXPANDED (Dataset Aumentado)

rea apile 0881 pii= 1.008

Figura 26 — Predigao 3 dos modelos Head, All e Expanded em comparag¢ao com a mascara
real.
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6 CONCLUSAO

O presente estudo cumpriu o objetivo de avaliar o desempenho e a utilidade da
arquitetura Mask R-CNN na tarefa complexa de segmentagdo de instdncias de danos
fisicos em macas. A investigacao comparativa permitiu identificar os limites da aplicacao
de Transfer Learning em datasets pequenos e a importancia da variabilidade de dados

para a precisao da segmentacao.

A analise dos experimentos demonstrou que as estratégias baseadas exclusivamente
no ajuste de pesos (Head e All) apresentaram limitagoes. Embora esses modelos tenham
sido eficazes na localizacao espacial do defeito (deteccao), a decomposigao da fungao de
perda de validagao revelou uma dificuldade de delinear a forma precisa da avaria em
realcdo as anotacOes espaciais reais, refletida na divergéncia persistente da perda de seg-
mentagao (Lpask). Identificou-se que essa dificuldade técnica decorre da relacao de escala,
como a propor¢ao do dano fisico é significativamente menor que a area total da imagem,
pequenas imprecisoes na predicao da mascara geram penalizagoes desproporcionais nas

métricas de validagao.

Em contrapartida, a investigacao confirmou que a capacidade de generalizacao do
modelo esta diretamente atrelada a exposicao a variagoes espaciais durante o treinamento.
A utilizagao do dataset expandido (Data Augmentation) provou ser a estratégia determi-
nante para a estabilizacdo do modelo. Esta abordagem permitiu que a rede aprendesse
a variabilidade topolégica dos defeitos, resultando em uma redugao drastica no erro de

segmentacao e elevando o mloU.

Conclui-se, portanto, que a arquitetura Mask R-CNN é uma ferramenta vidvel para
auxiliar no cumprimento dos critérios relacionados a danos fisicos da Instrugdo Normativa
n.? 5/2006 [2]. O trabalho contribui para a modernizagao do setor fruticola ao demonstrar
que, para além da simples deteccao, é possivel alcangar a segmentacao automatizada

necessaria para mitigar a subjetividade humana no controle de qualidade de macas.

Para trabalhos futuros, propoe-se a otimizacao da arquitetura visando a execucao
do modelo em tempo real, permitindo sua integracao em esteiras de classificagao industrial.
Recomenda-se também o desenvolvimento de métodos de pés-processamento para realizar
o calculo métrico da area dos danos segmentados (convertendo a contagem de pixels para
mm? ou cm?). Com base nessas medicoes, sugere-se a implementagao de um algoritmo
de decisao que aplique as tolerancias da Instrugdo Normativa n.° 5/2006(2], classificando
automaticamente as macgas nas categorias Extra, Categoria I, Categoria II e Categoria III,

consolidando assim uma solugao completa para a automacao do controle de qualidade.
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