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RESUMO

A tentativa da representação visual da música não é algo novo, a muitos anos diversos autores já aborda-
ram essa temática sob diferentes perspectivas, em sua maioria com um caráter mais artístico e subjetivo.
Contudo, com o avanço da visão computacional, dos estudos da computação gráfica e dos processamentos
de sinais digitais, tornou-se possível explorar essa temática de forma mais objetiva. Este trabalho propõe
uma abordagem computacional dessa representação visual do som, convertendo dados unidimensionais
em dados bidimensionais correspondentes. Utilizando técnicas de extração de características, e as de
síntese de imagens, os dados de um arquivo de áudio podem ser convertidos em dados bidimensionais
de uma imagem, criando uma representação visual que corresponde diretamente ao comportamento das
variações de frequências, amplitude e energia do som em tempo real. Esse estudo visa possibilitar uma
experiência sonora e visual diretamente ligada e precisa, de arte generativa.

Palavras-chave: Extração. Frequência. Síntese.
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ABSTRACT

The attempt to visually represent music is not a new concept, for many years, several authors have
explored this theme from different perspectives, generally with a more artistic and subjective character.
However, with the advancement of computer vision, computer graphics, and digital signal processing,
it has become possible to investigate this subject in a more objective and systematic way. This work
proposes a computational approach to the visual representation of sound by converting one-dimensional
data into corresponding two-dimensional data. Using feature extraction and image synthesis techniques,
the data from an audio file can be transformed into two-dimensional image data, creating a visual
representation that directly corresponds to the behavior of frequency, amplitude, and energy variations
of the sound in real time. This study aims to enable a directly linked and precise auditory and visual
experience through generative art.

Keywords: Extraction. Frequency. Synthesis.
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1 INTRODUÇÃO

A associação entre imagem e som não é algo recente; há séculos cientistas e artistas exploram
a relação entre esses domínios em estudos, experimentos e performances, especialmente na intersecção
entre artes visuais e música. No campo da expressão artística musical, a vinculação entre cor e som
aparece de modo recorrente, articulando-se tanto em teorias quanto em práticas criativas [1, 2].

A similaridade com as ondas mecânicas do som neste aspecto é imediata, e Newton, tendo
observado sete cores na decomposição da luz (em referência direta às sete notas da escala diatônica), foi
o primeiro a colocar comparativamente o som e a cor lado a lado, presumindo que cada cor corresponderia
a uma nota. Assim, produziu dois discos: um contendo as sete cores do espectro visível, que ao ser girado
resulta na percepção do branco; e outro no qual cores são associadas às notas musicais [3, 4].

A conversão de dados constitui um processo central em sistemas computacionais modernos, per-
mitindo que informações originalmente codificadas em um formato, estrutura ou domínio sejam trans-
formadas em outra representação adequada a um objetivo específico. Essa transcodificação possibilita
operações como análise, visualização, compressão ou síntese, e é amplamente utilizada em aplicações
científicas, artísticas e tecnológicas [5].

Representar dados em domínios alternativos permite explorar propriedades estruturais não visí-
veis em sua forma original, além de facilitar interpretações computacionais que dependem de organização,
escala ou granularidade diferenciadas. Assim, a conversão de dados não se limita a uma operação técnica,
mas constitui uma etapa conceitual essencial em fluxos de processamento contemporâneos [6].

A transposição de dados para dimensões superiores viabiliza novas classes de análise e visualiza-
ção, permitindo combinar informação temporal ou sequencial com representação espacial. É justamente
esse princípio que fundamenta transformações nas quais a dimensão adicional atua como um eixo inter-
pretativo capaz de revelar propriedades antes implícitas na estrutura original dos dados[7, 8].

O maior obstáculo para performances que combinam arte visual e música é a criação em tempo
real, pois não é viável que o performer produza simultaneamente ambas as expressões. Por isso, a maior
parte das obras que articulam música e imagem permanece ligada a escolhas estéticas, subjetivas ou
simbólicas, sem uma correspondência direta e calculável entre dados acústicos e elementos visuais [9, 10].

A relação proposta neste trabalho entre dados acústicos e representações visuais também se
insere no campo das discussões sobre sinestesia, especialmente no que se refere às formas de correspon-
dência intermodal estudadas na neurociência e na psicologia perceptual. A sinestesia genuína, conforme
descrevem Cytowic e Eagleman [11], caracteriza-se pela automaticidade e consistência de associações in-
tersensoriais que ocorrem sem esforço consciente, distinguindo-se de qualquer mecanismo computacional
ou simbólico. De modo semelhante, Hubbard e Ramachandran [12] afirmam que a experiência sines-
tésica não envolve tradução voluntária entre modalidades, mas ativação cruzada entre áreas cerebrais
adjacentes, indicando bases neurocognitivas específicas para o fenômeno.

Distinto desse processo biológico, o presente trabalho realiza um mapeamento sistemático entre
parâmetros sonoros e atributos visuais, alinhando-se às estratégias formais de visualização discutidas
por Bertin [13], toda representação gráfica depende da escolha adequada de variáveis visuais capazes de
expressar variações de dados. Assim, embora não busque reproduzir a experiência subjetiva da sinestesia,
a metodologia adotada permite refletir sobre aproximações conceituais entre percepção multimodal e
modelos computacionais de tradução sensorial. Tal abordagem também dialoga com discussões recentes
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sobre visualização musical e correlações entre som e cor, como argumenta Gartrell [14].

O presente trabalho propõe transcrever dados unidimensionais, como arquivos de áudio, em da-
dos bidimensionais, como imagens. A conversão ocorre por meio da extração de características espectrais
e temporais, representando diretamente variações de frequência, amplitude e energia presentes no sinal
sonoro. Esse processo considera igualmente o fator temporal, produzindo visualizações em tempo real
dos trechos analisados.

A conversão é realizada mediante diferentes técnicas de extração e processamento de sinais, cujas
saídas se complementam na construção de uma composição visual única. Dessa forma, o método inte-
gra múltiplas abordagens analíticas para gerar representações diretamente derivadas do comportamento
acústico do áudio.

O objetivo deste trabalho é extrair, por meio de técnicas selecionadas, as características neces-
sárias para a síntese de imagens em tempo real tomadas a partir de um arquivo de áudio, produzindo
sequências visuais que funcionem como representações da estrutura sonora. A ênfase das análises recai
sobre atributos espectrais, dos quais derivam imagens sucessivas capazes de traduzir, sem simbolismo
subjetivo, as dinâmicas presentes no sinal.
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2 FUNDAMENTAÇÃO TEÓRICA

A fundamentação teórica aborda as definições técnicas dos tipos de arquivos utilizados no tra-
balho e das técnicas de extração utilizadas nos dados obtidos.

Amostras de áudio bruto formam um sinal unidimensional em série temporal, que é funda-
mentalmente diferente de imagens bidimensionais. Sinais de áudio são comumente transformados em
representações tempo-frequência bidimensionais para processamento, mas os dois eixos, tempo e fre-
quência, não são homogêneos como os eixos horizontal e vertical de uma imagem. Imagens são capturas
instantâneas de um alvo e geralmente analisadas como um todo ou em partes, com poucas restrições de
ordem; no entanto, sinais de áudio precisam ser estudados sequencialmente, em ordem cronológica. Essas
propriedades deram origem a soluções específicas para áudio[15].

Em um arquivo de áudio, podemos observar dois tipos de características presentes, a Frequência
e Amplitude. Frequência é a velocidade da vibração, o que define a altura, no quesito musical. Ela só é
útil ou significativa para sons musicais, nos quais há uma forma de onda fortemente regular. A frequência é
medida como o número de ciclos de onda que ocorrem em um segundo. A unidade de medida da frequência
é o Hertz.

Amplitude é o tamanho da vibração, e isso determina o quão alto é o volume do som. Já vimos
que vibrações maiores produzem sons mais altos. A amplitude é importante ao equilibrar e controlar o
volume dos sons, como no controle de volume de um reprodutor de CD. O termo nota é utilizado na música
de forma ampla, podendo referir-se tanto ao símbolo musical quanto ao som dotado de altura percebida.
Cada nota apresenta atributos que determinam sua duração relativa e altura (𝑝𝑖𝑡𝑐ℎ), relacionando-se à
frequência fundamental do som produzido[16].

O conceito de 𝑝𝑖𝑡𝑐ℎ corresponde a uma propriedade perceptiva que permite ordenar os sons em
uma escala de frequência, de modo que notas com frequências fundamentais em razão de potências de
dois (metade, dobro etc.) são percebidas como semelhantes — fenômeno que dá origem à noção de classe
de altura (pitch class) e oitava.

A discretização do contínuo de alturas leva à definição de escala musical, entendida como um
conjunto finito de alturas (notas musicais) representativas distribuídas dentro de uma oitava. Müller [17]
destaca ainda que diferentes culturas e períodos históricos propuseram divisões distintas desse espaço
sonoro, não havendo uma escala universalmente válida: a adequação de uma escala depende do tipo de
música, do instrumento e do contexto cultural no qual é empregada.

Diferente do áudio a imagem possui duas dimensões, a renderização de uma cena 3D produz um
array de pixels (contração de picture element) chamado raster, que será exibido em algum tipo de matriz
2D, como um monitor, ou gravado em um arquivo de imagem. Os pixels são modelos computacionais
da cor natural, geralmente processados em valores ponto flutuante durante o processo de renderização,
podendo ser descritos como 𝑝 ∈ R, 0 ≤ 𝑝 ≤ 1, sendo 0 ausência de cor e 1 a intensidade total da cor.
Cada pixel é descrito como um array de três valores usados para representar as três frequências luminosas
percebidas pelas células cones presentes no olho humano:

Vermelho, verde e azul (red, green, blue - RGB), respectivamente. A variação de intensidade em
cada canal RGB é responsável pela percepção das demais cores, tais como amarelo (1, 1, 0) e cinza (0.5,
0.5, 0.5) [18].



26

É possível existir ainda um canal adicional alpha para dar suporte a imagens com transparência,
geralmente gravadas em arquivos com extensão .png. Existem modelos de cores que se baseiam em
outros parâmetros para a formulação da cor, como o modelo CMYK, que ao contrário do RGB (que é
um modelo aditivo de cores para dispositivos que emitem luz), trata-se de um modelo subtrativo de cores
baseado na absorção da luz, utilizado para impressão de imagens em papel [18].

Uma imagem digital possui dois atributos que influenciam sua qualidade, a resolução espacial,
que é a dimensão 𝑚 × 𝑛 da matriz 2D da imagem, determinando assim a sua quantidade total de pixels,
e a quantização de cor, que é a quantidade 𝑁 de bits utilizados por cada canal de cor para representar
as variações de cores possíveis.

Ou seja, em um display de 24 bits (8 bits para cada canal RGB, gerando 28 = 256 valores distintos
por canal) é possível representar 224 = 16.777.216 de cores. O tamanho de arquivo sem compressão que
uma imagem RGB de 24 bits ocupa é dado pela 𝑙𝑎𝑟𝑔𝑢𝑟𝑎 × 𝑎𝑙𝑡𝑢𝑟𝑎 × 𝑁 , logo, uma imagem em resolução
full hd ocupa 1920 × 1080 × 24 = 49.766.400𝑏𝑖𝑡𝑠, ou aproximadamente 6.22𝑀𝐵 (mega bytes)[18]. Para
extração de características foram selecionadas técnicas com mais material e estudos sobre elas, também
as mais utilizadas, por serem mais reconhecíveis e com objetivos mais específicos e claros, tornando-as
mais reconhecíveis.

Podemos ver na Tabela 1, a escala feita por Newton e outros demais cientistas e artistas, re-
ferentes as notas musicais e suas respectivas transcrições em cores, relacionando simbolicamente cores
do espectro visível com notas musicais da escala ocidental, conceito esse que também foi abordado por
outros autores, alguns também presentes na tabela, estudos esses utilizados para sinestesia e visualização
musical [14].

A partir da análise apresentada por Gartrell [14], compreende-se que essas tentativas de correla-
cionar sons e cores não se limitam a um simples exercício especulativo, mas refletem uma epistemologia
própria da era clássica, na qual diferentes domínios sensoriais eram organizados segundo princípios de
proporcionalidade e ordem. O autor discute como, nesse período, a representação adquiria um papel
central na construção do conhecimento, permitindo que fenômenos heterogêneos fossem interpretados
dentro de um mesmo regime simbólico.

Assim, as escalas cromáticas e sonoras eram percebidas como estruturas paralelas, ambas deri-
vadas de leis naturais consideradas universais. Esse enquadramento contribuiu para consolidar a ideia
de que a percepção podia ser sistematizada matematicamente, fundamentando práticas que associavam
harmonia musical, ordenação visual e, posteriormente, experimentações sinestésicas.

2.1 Transformada de Fourier de Curto Prazo

O som pode ser representado matematicamente como uma função contínua que descreve a va-
riação da pressão do ar em relação ao tempo. Considerando um sinal analógico, tanto o tempo quanto
a amplitude são grandezas reais e contínuas, de modo que o sinal pode ser modelado como uma função
𝑓 : R → R, onde a cada instante de tempo 𝑡 ∈ R corresponde um valor de amplitude 𝑓(𝑡) ∈ R. O gráfico
dessa função, que relaciona amplitude e tempo, constitui a forma de onda (𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚) do som [19].

Do ponto de vista matemático, uma função define uma relação entre um conjunto de entradas e
um conjunto de saídas, de modo que cada elemento de entrada se associa exatamente a um elemento de
saída. Assim, é necessário distinguir entre a própria função 𝑓 e o valor resultante 𝑓(𝑡) obtido para um
dado argumento 𝑡. Enquanto a matemática trata 𝑓 de maneira abstrata — sem considerar o significado
físico do argumento —, a engenharia frequentemente utiliza a notação 𝑓(𝑡) para enfatizar a dependência
temporal do sinal. Essa abordagem permite representar formalmente a estrutura fundamental de um som
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Name Year C C# D D# E F F# G G# A A# B

Isaac Newton 1704

Louis Bertrand Castel 1734

George Field 1816

D. D. Jamson 1844

Theodor Seeman 1881

A. Wallace Rimington 1893

Bainbridge Bishop 1893

H. von Helmholtz 1910

Alexander Scribin 1911

August Aeppli 1940

J.Belmont 1944

Steve Zieverink 2004

Tabela 1 – Relação de cor e notas musicais por diversos autores

como uma função contínua de tempo e amplitude [17].

A Transformada de Fourier de Curto Prazo (STFT) (ou short-term Fourier transform) é uma
ferramenta de uso geral poderosa para o processamento de sinais de áudio. Ela define uma classe parti-
cularmente útil de distribuições tempo-frequência, que especificam a amplitude complexa em função do
tempo e da frequência para qualquer sinal. Nos preocupamos principalmente com o ajuste dos parâmetros
da STFT para aproximar a análise tempo-frequência realizada pelo ouvido humano para fins de exibição
espectral e medir parâmetros de modelos em um espectro de curto prazo.

A definição matemática do STFT para sinais genéricos analógicos é [20]

𝑋𝑚(𝜔) =
∑︀∞

𝑛=−∞ 𝑥(𝑛)𝑒−𝑖𝑤(𝑛−𝑚𝑅) (2.1)

onde

𝑥(𝑛) = sinal de entrada no instante 𝑛

𝑤(𝑛) = função janela de comprimento 𝑀

𝑋𝑚(𝜔) = Transformada de frequencia dos dados janelados centrados no instante 𝑚𝑅

𝑅 = tamanho do salto (hop-size), em amostras.

Estes sinais não são utilizados por qualquer equipamento digital, esses equipamentos digitais
necessitam de uma conversão. A fórmula dada para o sinal digital é [21]

𝑋𝑚(𝜔) =
∑︀∞

𝑛=−∞ 𝑥(𝑛) [𝑐𝑜𝑠(𝜔) − 𝑖.𝑠𝑒𝑛(𝜔)] (2.2)

Tanto a Equação 2.1 quanto a Equação 2.2 definem as transformadas de Fourier, para sinais



28

analógicos e digitais, respectivamente. Essa transformada contém números complexos que não existem
no mundo real, para este caso, a fórmula é

𝑋𝑚(𝜔) =
∑︀∞

𝑛=−∞ 𝑥(𝑛) [𝑐𝑜𝑠(𝜔)] (2.3)

A Equação 2.3 é a Equação 2.2, porém ela não utiliza números complexos, pois em equipamentos
digitais não existe forma de computar números complexos.

2.2 Mel Frequency Cepstral Coefficients

Uma das técnicas de extração utiliza Mel Frequency Cepstral Coefficients(MFCC) que pode
ser empregados em aplicações músicais. O MFCC leva em conta a percepção não linear do som pelo
ouvido humano. O que torna o uso de MFCC interessante é o fato de sua aplicação reduzir um espectro
de 1024 pontos para cerca de 15 a 40 pontos que podem ser utilizados para verificar a similaridade ou
distinção de sons [22]. O método foi originalmente proposto por Davis [23] para reconhecimento de fala, e
posteriormente adaptado para aplicações musicais. Conforme Logan [24], os coeficientes MFCC capturam
de forma compacta as propriedades espectrais relevantes para o timbre musical, permitindo a modelagem
de similaridade entre canções com boa eficiência. O processamento MFCC é realizado inicialmente por
um processo de janela, logo após o janelamento de sinal, é processado o DTF (Transformada Discreta
de Fourier), visto na equação 2.4.

A amplitude da DTF é filtrada por janelas triangulares na escala Mel e então, aplicada o loga-
ritmo. A Transformada Discreta de Cosseno é aplicada e os Coeficientes Mel-Cepstrais são as amplitudes
resultantes.

A escala Mel é uma escala psicoacústica que explora a relação de percepção da frequência
fundamental entre dois tons, criada a partir do estudo da dinâmica do sistema auditivo humano. A
unidade de medida Mel (em referência a melodia) refere-se a frequência subjetiva de tons puros percebida
pelo ouvido humano [22].

𝑋[𝑘] =
∑︀𝑁−1

𝑛=0 𝑥[𝑛] 𝑒−𝑗 2𝜋
𝑁 𝑘𝑛, 𝑘 = 0, . . . , 𝑁 − 1 (2.4)

O cálculo dos Mel Frequency Cepstral Coefficients (MFCCs) é realizado por meio de uma sequên-
cia de transformações matemáticas que visam aproximar a percepção auditiva humana da frequência.
Inicialmente, o sinal de áudio discreto 𝑥(𝑛) é dividido em janelas temporais curtas, sobre as quais se aplica
a Transformada Discreta de Fourier (DFT) ponderada por uma janela de Hamming 𝑤(𝑛), conforme

𝑋(𝑘) =
∑︀𝑁−1

𝑛=0 𝑤(𝑛)𝑥(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁 (2.5)

onde 𝑁 é o número de amostras por janela e 𝑓(𝑘) = 𝑘𝑓𝑠/𝑁 representa a frequência associada
ao índice 𝑘. A função de janela Hamming é definida como

𝑤(𝑛) = 0.54 − 0.46 cos
(︀

𝜋𝑛
𝑁

)︀
(2.6)

utilizada para reduzir descontinuidades entre segmentos adjacentes do sinal.

O espectro de magnitude |𝑋(𝑘)| é então mapeado para a escala Mel por meio de um banco de
filtros triangulares 𝐻(𝑘, 𝑚), que realiza uma compressão logarítmica da escala de frequências de modo
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a refletir a resposta perceptiva do sistema auditivo humano. Cada filtro é definido em função de suas
frequências centrais 𝑓𝑐(𝑚), calculadas através da conversão entre Hertz e escala Mel:

𝜑 = 2595 log10

(︁
1 + 𝑓

700

)︁
, (2.7)

e sua inversa,

𝑓 = 700
(︀
10𝜑/2595 − 1

)︀
. (2.8)

As energias filtradas são então comprimidas logaritmicamente:

𝑋 ′(𝑚) = ln
(︁∑︀𝑁−1

𝑘=0 |𝑋(𝑘)| · 𝐻(𝑘, 𝑚)
)︁

, (2.9)

onde 𝑀 é o número de filtros Mel.

Por fim, aplica-se a Transformada Discreta do Cosseno (DCT) para obter os coeficientes ceps-
trais,

𝑐(𝑙) =
∑︀𝑀

𝑚=1 𝑋 ′(𝑚) cos
[︀

𝑙𝜋
𝑀

(︀
𝑚 − 1

2
)︀]︀

, (2.10)

os quais representam as variações espectrais de forma compacta e aproximadamente descor-
relacionada. Esses coeficientes descrevem o contorno espectral do sinal e são amplamente utilizados na
análise de timbre e reconhecimento de padrões acústicos. Conforme discutido por Sigurdsson [25], apenas
os primeiros 15 coeficientes tendem a capturar as informações perceptualmente mais relevantes, sendo
também os mais robustos a variações de codificação e compressão, como o formato MP3.

Estudos posteriores mostraram que o conjunto de coeficientes MFCC apresenta alta consistência
entre diferentes implementações, especialmente nos primeiros 15 coeficientes, os quais concentram as
informações perceptualmente mais relevantes do sinal de áudio. Essa característica garante boa robustez
em aplicações de reconhecimento e classificação musical, mesmo quando os sinais são submetidos a
compressão perceptual, como no formato MP3, desde que em taxas superiores a 128 kbit/s [25]. O
método, originalmente proposto para reconhecimento de fala [23], foi posteriormente adaptado para
modelagem musical e recuperação de similaridade sonora, mostrando eficácia na representação de timbre
e estrutura espectral [24].

2.3 Espectograma

Com a escala Mel podemos obter um Mel-Espectograma. Um espectrograma é uma representação
visual de um sinal de áudio que foi submetido a uma Transformada de Fourier de curto prazo.

A partir de um espectrograma, é possível obter informações sobre a variação da amplitude de
cada frequência presente no sinal ao longo do tempo. Um mel-espectrograma é simplesmente um espectro-
grama no qual as frequências foram convertidas para a escala mel; uma escala na qual as distâncias entre
as frequências são proporcionais à percepção do cérebro humano sobre as diferenças entre as frequências
[26].
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2.4 Chroma

A percepção humana de altura musical apresenta uma natureza periódica, na qual dois sons
separados por uma oitava são percebidos como semelhantes em “cor” ou função harmônica. Essa relação
permite decompor o conceito de altura em dois componentes principais: a altura tonal (tone height) e
a croma. A altura tonal indica o número da oitava, enquanto a croma representa a identidade da nota
dentro do conjunto de classes de altura definido por {𝐶, 𝐶#, 𝐷, 𝐷#, 𝐸, 𝐹, 𝐹#, 𝐺, 𝐺#, 𝐴, 𝐴#, 𝐵}.

Enumerando as cromas de forma discreta, pode-se associar esse conjunto ao intervalo numérico
[0 : 11], onde 0 corresponde à nota 𝐶, 1 a 𝐶#, e assim sucessivamente até 11, que representa 𝐵. Define-se
então uma classe de altura (pitch class) como o conjunto de todas as notas que compartilham a mesma
croma, ou seja, todas as alturas que diferem entre si por um número inteiro de oitavas. Por exemplo, a
classe de altura correspondente à croma 𝐶 é composta pelo conjunto {. . . , 𝐶0, 𝐶1, 𝐶2, 𝐶3, . . .}, reunindo
todas as notas 𝐶 separadas por intervalos de oitava, o que define o 𝑐ℎ𝑟𝑜𝑚𝑎 como uma classe de altura
do som [17].

Na música, o termo característica de chroma ou chromagram está intimamente relacionado às
doze diferentes classes de altura. As características baseadas em chroma, também chamadas de perfis
de classe de altura (pitch class profiles), são ferramentas poderosas para analisar músicas cujas alturas
podem ser categoricamente organizadas (geralmente em doze categorias) e cuja afinação se aproxima da
escala temperada igual [16].

Uma das principais propriedades das características de chroma é que elas capturam aspectos har-
mônicos e melódicos da música, sendo ao mesmo tempo robustas a variações de timbre e instrumentação
[16].

As características de chroma têm como objetivo representar o conteúdo harmônico (por exemplo:
tonalidades, acordes) de uma janela de tempo curto do áudio. O vetor de características é extraído a
partir do espectro de magnitude utilizando transformadas como a STFT, CQT, CENS, entre outras [16].
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3 MÉTODO DE PESQUISA

O método de pesquisa elaborado para este trabalho segue o fluxo descrito na Figura 1, primeiro
o arquivo de áudio é aberto, é separado os dados importantes para a extração, sendo descartado o
cabeçalho do arquivo. Feita a primeira visualização mais simples do arquivo, com o objetivo de uma
primeira representação dos dados. Assim, os dados sendo calculados pelos extratores de características
e por fim, a saída da FFT é utilizada como entrada da MFCC e do Chroma, aplicando a convolução
das técnicas. Os métodos e técnicas escolhidos, foram métodos que são focados no pré-processamento de
áudio, extração de características do arquivo de áudio, e técnicas para a síntese de imagens baseadas nas
características extraídas.

Figura 1 – Diagrama do fluxo das operações com o arquivo de áudio.

Foi escolhido o arquivo de áudio que seria utilizado durante os primeiros testes, primeiramente
foram feitos testes mais simples para visualização gráfica do exemplo escolhido. A primeira conversão de
áudio para imagem que foi executada foi a de amplitude por tempo, resultando na Figura 2, evidenciando
a forma de onda do áudio escolhido, diferente dos seguintes experimentos, esta conversão não consiste
em nenhuma forma de manipulação ou extração de características ou dados do áudio. Mais simples do
que as utilizadas para o resultado final, como FFT, MFCC ou Chroma.

Utilizando-se da biblioteca do OpenCV, foram feitas as primeiras extrações de características
do áudio utilizado as técnicas de extração, com o áudio de exemplo e convertidas graficamente. Com
auxílio da biblioteca, os dados obtidos pela técnica da FFT aplicada sobre o áudio, foram utilizados
como coordenadas em um plano de duas dimensões e convertidas em uma linha contínua que se altera de
acordo com a alteração dos valores das frequências convertidas pela Equação 2.3, na Figura 3 o primeiro
resultado e na Figura 4 o segundo resultado. Na Figura 4 obteve-se uma melhor visualização do resultado
da FFT, separada por cor onde azul representa as frequências baixas, verde as médias e vermelho as altas.

Foram geradas dois tipos de imagens diferentes, utilizando a mesma técnica de extração do
MFCC, a Figura 5 com estilo de intensidade da cor de preto até a cor branca na imagem. Quanto
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Figura 2 – Visualização gráfica de amplitude por tempo.

Figura 3 – 𝐹𝑟𝑎𝑚𝑒 do primeiro resultado da extração da Fast Fourrier Transform

maior a frequência do canal, mais perto do branco e quanto mais perto do preto menos frequência. A
segunda síntese do MFCC na Figura 6 foi estruturada como um mapa de calor, os valores de frequência
são representadas na cor azul claro, verde e vermelho, separados em mais canais formando um gráfico
que avança em função do tempo.

A coloração do Chroma foi baseada na tabela de D.D. Jameson e Alexander Scribin representada
na Tabela 1, foi montada uma relação do tipo Hash Map entre chave e valor, com a chave sendo a nota
musical e o valor sendo o equivalente RGB da cor. A tabela de cores foi montada como uma mescla
das duas existentes para exibir uma maior diferença entre as notas mais discrepantes e uma maior
proximidade entre as notas semelhantes, que pode ser vista na Tabela 2. Assim como as outras técnicas,
o Chroma foi aplicado em função do tempo do arquivo de áudio, gerando uma tabela com a escala
de cores onde quanto maior a clareza da frequência equivalente a nota musical maior a nitidez da cor
escolhida para representação, ou seja, menos presença da cor preta na cor, Figura 7.

Tabela 2 – Escala de Cores por Notas Musicais

C C# D D# E F F# G G# A A# B
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Figura 4 – 𝐹𝑟𝑎𝑚𝑒 do segundo resultado da extração da Fast Fourrier Transform

Figura 5 – Primeiro resultado da aplicação da técnica Mel Frequency Cepstral Coefficients

Figura 6 – Segundo resultado da aplicação da técnica Mel Frequency Cepstral Coefficients
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Figura 7 – 𝐹𝑟𝑎𝑚𝑒 do resultado da aplicação do Chroma
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4 EXPERIMENTOS

Os experimentos foram realizados com o objetivo de evidenciar as diferenças entre conteúdos
distintos de arquivos de áudio e observar como as técnicas escolhidas se comportam em contextos variados.
Três arquivos foram selecionados: uma gravação isolada de baixo elétrico; uma gravação de guitarra
elétrica com forte distorção; e trechos vocais, tanto solo quanto coral. A análise desses áudios permite
compreender como cada extração reage a timbres, frequências e contextos musicais específicos.

As extrações realizadas no áudio de baixo concentram-se em maior ocorrência em frequências
mais baixas, como esperado para um instrumento grave. Já o áudio de guitarra apresenta conteúdo mais
médio/baixo, porém com maior quantidade de harmônicos devido ao efeito de distorção. No caso dos
vocais, a expectativa é de um chroma mais limpo no vocal solo e maior densidade de notas no coral,
refletindo a sobreposição de melodias e a natureza tímbrica da voz humana.

Na Figura 8 observamos o comportamento do Chroma aplicado ao áudio do baixo. A represen-
tação mostra notas bem definidas e com espaçamentos claros, uma vez que apenas um instrumento está
presente e sem sobreposição de frequências.

Figura 8 – 𝐹𝑟𝑎𝑚𝑒 do Chroma aplicado em uma linha de baixo

A seguir, a Figura 9 apresenta o resultado da FFT para o mesmo áudio. Como esperado, a
transformada evidencia a predominância de frequências graves, sem a presença de outras componentes
significativas, diferentemente das Figuras 3 e 4, onde há maior distribuição devido à presença de múltiplos
instrumentos e sintetizadores.

Além disso, o MFCC do áudio do baixo, representado na Figura 10, demonstra baixa variância
entre os coeficientes. Isso ocorre devido ao caráter repetitivo das notas e ao espectro limitado do ins-
trumento, contrastando com o comportamento mais variado observado em áudios completos de músicas.

No caso do áudio de guitarra elétrica distorcida, observa-se um comportamento mais complexo.
A Figura 11 mostra uma distribuição de frequências mais espalhada, consequência direta da distorção e
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Figura 9 – 𝐹𝑟𝑎𝑚𝑒 do Fast Fourier Transform aplicado em um áudio de baixo elétrico

Figura 10 – 𝐹𝑟𝑎𝑚𝑒 do Mel Frequency Cepstral Coefficients aplicado em um áudio de baixo elétrico

das notas mais agudas tocadas em relação ao baixo.

Essa maior instabilidade espectral também aparece na extração do MFCC, como pode ser visto
na Figura 12. As mudanças abruptas nas cores indicam transições rápidas e variações repentinas nas
características acústicas, típicas do efeito de distorção.

Para os dados vocais, foram analisados dois trechos: um vocal solo e um coral. Na Figura 13,
o Chroma aplicado ao vocal solo apresenta notas mais claras e bem definidas, ainda que com variações
provenientes de reverberação e da própria natureza da voz humana.

Já a Figura 14 demonstra como a presença de múltiplas vozes no coral resulta em uma dis-
tribuição mais difusa no Chroma, revelando diferentes notas simultâneas e menor intensidade de cada
componente individual.
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Figura 11 – 𝐹𝑟𝑎𝑚𝑒 do Fast Fourier Transform aplicado em um áudio de guitarra elétrica

Figura 12 – 𝐹𝑟𝑎𝑚𝑒 do Mel Frequency Cepstral Coefficients aplicado em um áudio de guitarra elétrica

Comparando o FFT dos dois trechos vocais, observa-se na Figura 15 uma predominância nas
frequências médias, típica de um vocal isolado executando uma única melodia.

Em contraste, a Figura 16 revela uma maior distribuição espectral no caso do coral, já que
diferentes vozes ocupam regiões distintas de frequência.

Essa diferença torna-se ainda mais evidente no MFCC. A Figura 17 apresenta um padrão con-
centrado, indicando que a energia do vocal solo se mantém em uma mesma faixa de coeficientes.

Já a Figura 18 evidencia regiões distintas nos coeficientes, cada uma correspondente a uma das
vozes presentes no coral, permitindo identificar visualmente suas diferenças espectrais.
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Figura 13 – 𝐹𝑟𝑎𝑚𝑒 do Chroma aplicado em um áudio de vocal único

Figura 14 – 𝐹𝑟𝑎𝑚𝑒 do Chroma aplicado em um áudio de coral
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Figura 15 – 𝐹𝑟𝑎𝑚𝑒 do Fast Fourier Transform aplicado em um áudio de vocal único

Figura 16 – 𝐹𝑟𝑎𝑚𝑒 do Fast Fourier Transform aplicado em um áudio de coral
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Figura 17 – 𝐹𝑟𝑎𝑚𝑒 do Mel Frequency Cepstral Coefficients aplicado em um áudio de vocal único

Figura 18 – 𝐹𝑟𝑎𝑚𝑒 do Mel Frequency Cepstral Coefficients aplicado em um áudio de coral
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5 RESULTADOS

Os experimentos aplicados nesse trabalho foram desenvolvidos com a finalidade de gerar resul-
tados visuais gerados continuamente, a partir das informações obtidas pela extração de características
específicas de um arquivo de áudio. A representação visual que foi obtida a partir das características
extraídas do áudio, formam uma sequência de quadros que representam e expõem a particularidade de
cada técnica utilizada para extração.

No resultado, é possível observar as características de cada uma das extrações utilizadas nos
dados extraídos do arquivo de áudio, a FFT nas linhas geradas, a distorção causada pelo MFCC nessas
linhas e a coloração vinda da tabela dos valores das frequências existentes no Chroma. No canto superior
esquerdo é evidenciado a qual cor da linha da tabela cromática está sendo colorida a linha desenhada na
tela pelo OpenCV, qual a frequência que está sendo identificada pela FFT no momento atual. Os efeitos
causados pelas diferentes frequências da música, alteram e distorcem as linhas que aparecem na tela pelo
FFT que cria o aspecto de ondas e MFCC que causa textura por cima do resultado da FFT.

Figura 19 – Frame do Resultado Final da Convolução.

Aplicado um filtro de compressão logarítmica, o resultado é menos espelhado e as formas que
são geradas apartir do MFCC ficam mais claras do que quando a distorção causada não é controlada. A
diferença entre as duas figuras, Figura 19 e 20, é o controle do nível da distorção e textura causada pelos
valores do FFT e MFCC.

No resultado final da experiência é possível de identificar as distorções causadas pelo MFCC nas
linhas resultantes da FFT, que são introduzidas na tela de fundo preto e coloridas pela frequência que é
identificada pelo Chroma.

A Figura 19 apresenta menos espaçamento das informações do FFT na tela, o MFCC esta mais
estabilizado, e é perceptível a formação dos três círculos ao fundo.Na 20 as formações estão espalhadas
por conta da distorção mais alta, justamente pelo valor sem normalização usado nela. Os círculos ao
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fundo se espalham mais formando as linhas que se vê ao fundo, as linhas do FFT ficam menos lineares
e compactadas ao centro.

Figura 20 – Outro frame do Resultado Final da Convolução.

Utilizando uma convolução das técnicas de extração escolhidas, formam-se frames com visuais
únicos e característicos. Essa representação visual pode ser aplicada em concertos, shows ou qualquer
tipo de apresentação musical por seu processamento paralelo ao áudio, sendo possível as imagens serem
processadas em tempo real, poderiam ser utilizadas por DJs, que utilizam imagens para conduzir suas
performances, geralmente imagens e vídeos abstratos, a correlação de imagem e som seria explorada de
maneira mais fiel, em vista que as imagens seriam geradas a partir do próprio áudio.
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6 CONCLUSÃO

O trabalho apresenta uma conversão dos dados unidimensionais em representações bidimensio-
nais, utilizando as técnicas de extração de características FFT, MFCC e Chroma. Tendo experimentos
de como diferentes descritores do sinal se comportam quando sintetizados graficamente, focado na trans-
posição direta de parâmetros mensuráveis para elementos visuais. A organização temporal do sinal e sua
decomposição espectral permitem gerar estruturas visuais que representam cada característica extraída.

Os experimentos demonstraram que cada técnica de extração produz padrões distintos quando
convertidos em imagem, reforçando que frequências graves, médias ou agudas, bem como variações tím-
bricas e harmônicas, influenciam diretamente o resultado visual. A FFT gerou linhas mais estáveis e
contínuas, enquanto o MFCC introduziu texturas perceptíveis e dependentes da densidade espectral e o
Chroma as notas predominantes e variações tonais ao longo do tempo. A combinação dessas técnicas em
uma única síntese permitiu observar como seus efeitos se complementam, criando composições visuais
coerentes com o comportamento dos dados.

Os resultados alcançados indicam que é viável produzir representações visuais derivadas direta-
mente das características extraídas de um sinal unidimensional, possibilitando aplicações em contextos
artísticos, educativos ou performáticos. Ele oferece uma abordagem para se visualizar propriedades es-
pectrais e temporais de forma simultânea.

Este mesmo trabalho se modificado poderia também ser utilizado com sinais de entrada já que
as operações são feitas em janela temporal, gerando o que está sendo identificado sequencialmente. O
que pode ser interessante para performances ao vivo também.

Uma utilidade a ser mencionada também, é a de 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝑠 reprodutores de arquivos de áudio,
este tipo de representação visual sendo integrado a um sistema do tipo, causaria uma experiência multi
sensorial do arquivo de áudio a ser reproduzido pelo 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 no usuário.
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