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TARDIVO, JPSO. Estudo Experimental do Método Network Scale-Up em Dife-
rentes Topologias de Grafos Aleatérios. 57 p. Trabalho de Conclusao de Curso (Ba-
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RESUMO

A estimacgao do tamanho de populacoes de dificil acesso é um desafio central em diversas
areas, para o qual o Método Network Scale-Up (NSUM) se apresenta como uma ferra-
menta proeminente. A acuracia deste método, contudo, depende da escolha entre seus
estimadores e da topologia da rede social subjacente. Este trabalho conduz um estudo
experimental comparativo para avaliar a robustez e a precisao dos estimadores Média
das Razoes (MoR) e Razao das Somas (RoS) do NSUM sob diferentes topologias. Por
meio de simulacao computacional, o desempenho dos estimadores foi avaliado em trés
modelos de grafos aleatorios: Erdos-Rényi, Barabasi-Albert e Watts-Strogatz. Os resulta-
dos demonstram que em redes com distribuicao de grau homogénea como Erdds-Rényi e
Watts-Strogatz, os estimadores MoR e RoS apresentam desempenho virtualmente idén-
tico. Contudo, em redes do tipo scale-free como Barabési-Albert, caracterizadas pela
heterogeneidade de grau, o estimador RoS revela uma superioridade, apresentando menor
risco de erro significativo e maior confiabilidade. Conclui-se que a heterogeneidade da
distribuicao de grau é o fator estrutural determinante para a escolha do estimador, com
o RoS sendo a opc¢ao mais robusta em cenarios que emulam redes sociais realistas com a
presenca de hubs.

Palavras-chave: Network Scale-Up. Grafos Aleatérios. Estimadores de Rede. Anélise de

Erro. Simulagdo Computacional.






TARDIVO, JPSO. Experimental Study of the Network Scale-Up Method in
Different Random Graph Topologies. 57 p. Final Project (Bachelor of Science in
Computer Science) — State University of Parand, Apucarana—PR, 2025.

ABSTRACT

Estimating the size of hard-to-reach populations is a key challenge across several fields,
for which the Network Scale-Up Method (NSUM) stands out as a prominent tool. The
accuracy of this method, however, depends on the choice of its estimators and the under-
lying social network topology. This work conducts a comparative experimental study to
assess the robustness and precision of NSUM’s Mean of Ratios (MoR) and Ratio of Sums
(RoS) estimators under different topologies. Through computational simulation, the per-
formance of the estimators was evaluated on three random graph models: Erdos-Rényi,
Barabasi-Albert, and Watts-Strogatz. The results demonstrate that in networks with a
homogeneous degree distribution such as Erdés-Rényi and Watts-Strogatz, the MoR and
RoS estimators exhibit virtually identical performance. However, in scale-free networks
such as Barabasi-Albert, characterized by degree heterogeneity, the RoS estimator reveals
a superior performance, showing a lower risk of significant error and greater reliability.
It is concluded that the heterogeneity of the degree distribution is the decisive structural
factor for estimator selection, with RoS being the more robust option in scenarios that
emulate realistic social networks with the presence of hubs.

Keywords: Network Scale-Up. Random Graphs. Network Estimators. Error Analysis.

Computational Simulation.
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1 INTRODUCAO

A estimacao do tamanho de populacoes de dificil acesso, como grupos afetados
por desastres naturais, portadores de doengas estigmatizadas ou membros de redes clan-
destinas, representa um desafio fundamental para a epidemiologia, as ciéncias sociais e a
formulagdo de politicas piblicas [1]. Métodos de enumeragao direta sdao frequentemente
inviaveis devido a natureza dispersa ou sigilosa desses grupos. Nesse contexto, a analise de
redes sociais emerge como uma abordagem poderosa, permitindo inferir caracteristicas de
uma populacao inteira a partir das conexoes locais de um subconjunto de seus membros
2].

Uma das técnicas mais proeminentes para essa finalidade ¢ o Método Network
Scale-Up (NSUM), uma abordagem de estimacao indireta que utiliza Dados Relacionais
Agregados, do inglés Aggregated Relational Data (ARD) [3]. O método baseia-se em in-
quirir uma amostra de individuos sobre o tamanho de suas redes pessoais e quantos
membros da populagao-alvo eles conhecem. A partir desses dados, dois estimadores sao
predominantemente utilizados para calcular a prevaléncia da populagao oculta, a Média
das Razoes, do inglés Mean of Ratios (MoR), que pondera cada respondente igualmente,
e a Razao das Somas, do inglés Ratio of Sums (RoS), que implicitamente d4 mais peso

aos individuos mais conectados [4].

A precisao do NSUM, contudo, nao é absoluta e sua performance é intrinsecamente
dependente da topologia subjacente da rede social [5]. A escolha entre os estimadores MoR
e RoS nao é trivial, e trabalhos tedricos sugerem que a presenca de heterogeneidade na
distribuicao de conectividade, como a existéncia de hubs, vértices altamente conectados,
pode introduzir vieses e afetar a robustez de cada estimador de maneira distinta [6, 4].
Enquanto limitantes de erro analiticos fornecem uma base tedrica, a validagdo empirica
de seu comportamento em diferentes estruturas de rede é crucial para compreender sua

aplicabilidade pratica.

O objetivo central deste trabalho é, portanto, conduzir um estudo experimental
e comparativo para avaliar a acuracia e a robustez dos estimadores MoR e RoS sob
diferentes topologias de grafos aleatorios. Para isso, foi desenvolvida uma metodologia de
pesquisa baseada em simulacdo computacional que espelha o protocolo experimental de
Diaz-Aranda et al. [4], garantindo a comparabilidade direta dos resultados, o desempenho
dos estimadores sera sistematicamente medido em trés modelos de rede candnicos, cada
um representando uma propriedade estrutural distinta: o modelo de Erdés-Rényi, como
linha de base de uma rede homogénea e aleatoria; o modelo de Barabasi-Albert, para
investigar o impacto da heterogeneidade de grau em redes scale-free; e o modelo de Watts-

Strogatz, para analisar o efeito da alta clusterizacao local caracteristica de redes de "mundo
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pequeno”.

Este trabalho esta estruturado da seguinte forma. O Capitulo 2 apresenta a fun-
damentacao tedrica, detalhando o método NSUM, seus estimadores e os trés modelos
de grafos aleatérios utilizados como bancada de testes. O Capitulo 3 descreve a meto-
dologia de pesquisa, incluindo a organizacao da simulagao e as métricas de avaliacao de
desempenho. No Capitulo 4, sdo apresentados os parametros especificos e a configuragao
dos experimentos para cada topologia de rede. Os resultados quantitativos obtidos nas
simulagoes sao detalhados e analisados no Capitulo 5. Por fim, o Capitulo 6 sintetiza
as conclusoes do estudo, discute as implicagoes dos resultados e aponta direcoes para

trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

As redes sociais podem ser modeladas formalmente como grafos [7, 8], onde os
individuos sao representados por vértices e as relacoes entre eles por arestas. Essa abs-
tracao permite o uso de ferramentas matematicas e computacionais para analisar padroes
de conexao, difusdo de informagao, e estrutura relacional em diferentes contextos [9]. No
caso de redes sociais humanas, as arestas geralmente representam interacoes como ami-
zade, comunicagao, colaboracao ou influéncia, facilitando estudos sobre dinamica social e

comportamental [2].

O presente trabalho foca na analise de um método de estimacao populacional que
opera sobre essas redes, tomando como referéncia central o arcaboucgo tedrico e experi-
mental estabelecido recentemente por Diaz-Aranda et al. [4]. Para validar os limitantes
analiticos propostos pelos autores e avaliar a robustez do método, é fundamental testa-lo
em ambientes controlados que simulam diferentes estruturas de rede observadas no mundo
real. Esta fundamentacao tedrica, portanto, esta organizada da seguinte forma: primeiro,
apresenta-se o método central de estudo, o NSUM e seus estimadores MoR e RoS, con-
forme as defini¢coes do trabalho base; em seguida, justifica-se a necessidade de modelos
de grafos aleatérios para a analise de erro; por fim, detalham-se os trés modelos de rede

sintética que servirao como bancadas de teste para a avaliacao empirica.

2.1 O Método Network Scale-Up (NSUM)

O NSUM, emerge como uma abordagem indireta para estimar o tamanho de po-
pulagoes de dificil acesso [1, 10] em cenérios onde a enumeracao direta através de listas
administrativas ou inquéritos convencionais ¢ inviavel, seja devido a raridade do grupo,
estigmatizacao associada, ou auséncia de uma amostragem completa, o NSUM oferece
uma alternativa metodolégica. A técnica explora a estrutura inerente das redes sociais

dos individuos para inferir caracteristicas populacionais agregadas [11].

O principio fundamental do NSUM reside na utilizagdo de ARD [3]. Estes dados
sao coletados por meio de perguntas diretas aos respondentes de um inquérito amostral,
tipicamente na forma "Quantos X vocé conhece?", onde X representa membros da popula-
cao de interesse. Essencialmente, o método assume que a rede pessoal de um respondente

reflete, em certa medida, a composicao da populacao geral.

A formulagao basica [12] do estimador NSUM requer duas informagoes principais
de cada respondente i, o nimero de pessoas que ele conhece pertencentes ao grupo de
interesse k, denotado por y;;, e o tamanho total de sua rede pessoal, ou seu grau, denotado

por d;. O método entdo calcula [13] a propor¢ao de membros do grupo k na populagao
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geral p, = Ni/N, onde Nj é o tamanho desconhecido do grupo e N o tamanho total
da populacao estimando essa proporcao p; através da razao entre o nimero total de
individuos do grupo k conhecidos por todos os respondentes na amostra e o tamanho

total das redes de todos os respondentes.

A estimativa do tamanho da populacao Ny é entdao obtida multiplicando-se essa
proporc¢ao estimada pelo tamanho total conhecido da populacao N, resultando em N, =
pr X N. Este estimador béasico, contudo, fundamenta-se em pressupostos significativos,
como a mistura aleatéria na rede [5], com auséncia de homofilia ou barreiras sociais
sistematicas, a transmissao perfeita de informacao, onde o respondente sabe que o contato
pertence ao grupo k, a auséncia de erros de recordagdo por parte do respondente, e a

acuracia na estimacgao do grau d;.

O trabalho [4] propoe um modelo geral para a construcdo de redes aleatérias,
que serve como um ambiente controlado para o estudo de erros. Nesse modelo, a rede GG
sobre uma populagao V' é gerada através de um processo estocastico independente para
cada vértice v € V', em duas etapas, na primeira, o vértice v sorteia um grau R, de uma
distribuicao de graus predefinida FPy4, em segundo lugar, dado R,, o vértice seleciona R,
vizinhos de forma uniforme e aleatéria do conjunto de todos os outros vértices possiveis
VA {v}.

Neste framework, as variaveis de interesse para o NSUM, como a proporcao de
vizinhos ocultos de cada individuo, tornam-se dependentes entre si. Essa dependéncia
impede a aplicacao direta de limitantes de concentragao padrao, que tipicamente exigem
independéncia das varidveis aleatérias [14]. O desafio analitico, portanto, reside em derivar
limitantes de erro validos mesmo na presenca dessa correlagao, o que os autores abordam

demonstrando correlagao negativa e utilizando independéncia condicional.

Na préatica, desvios desses pressupostos podem introduzir vieses consideraveis. A
heterogeneidade na propensao dos individuos a conhecer membros do grupo-alvo gera
efeitos de barreira e superdispersao. Erros de transmissao ocorrem quando o respondente
desconhece a afiliagao do contato ao grupo, comum em populagoes estigmatizadas. Erros
de recordagao sistematicos, onde o respondente subestima ou superestima o nimero de
conhecidos em grupos grandes ou pequenos, respectivamente, também afetam a precisao

15].

A estimacao precisa do grau d; de cada respondente é outro desafio central. Di-
versas técnicas foram propostas, incluindo métodos de enumeracao direta, inviaveis em
larga escala, métodos de soma por categorias relacionais, e o proprio método scale-up
aplicado a populagoes de tamanho conhecido, como pessoas com nomes comuns, para
calibrar a estimagao do grau [5]. A defini¢ao operacional de "conhecer'alguém é crucial e

pode impactar significativamente os resultados.



27

Modelos estatisticos mais sofisticados foram desenvolvidos para mitigar o impacto
dessas fontes de erro [16, 6, 17]. Abordagens hierdrquicas e Bayesianas buscam modelar
explicitamente a superdispersao, corrigir erros de recordagao através de curvas de calibra-
¢ao, ajustar para efeitos de barreira considerando a estrutura social, e incorporar incerteza
na estimagao do grau e nos erros de transmissao. Esses refinamentos tornam o NSUM uma
ferramenta mais robusta, embora demandem dados adicionais ou pressupostos mais com-

plexos.

O presente trabalho analisa duas abordagens, a Média das Razoes (MoR) e a
Razao das Somas (RoS), para calcular a proporgao estimada da populagao oculta, py [4].
Embora ambos utilizem os mesmos dados de entrada, o grau do respondente e o nimero
de contatos no grupo-alvo, eles diferem fundamentalmente na maneira como agregam essa

informacgao, o que acarreta implicagoes diretas na robustez e no viés do resultado final.

O estimador MoR, representa uma abordagem no nivel do individuo. Para cada
respondente v na amostra S, calcula-se primeiro a proporcao da populacao oculta den-
tro de sua rede pessoal. Esta proporc¢ao individual, Y,, é simplesmente a razdo entre o
ntmero de seus vizinhos na populagao oculta C, e seu grau total R,. A estimativa final
¢ entao a média aritmética simples dessas proporc¢oes individuais sobre toda a amostra.

Formalmente:

PMor = RE Z = (2.1)
|S’ vES ’S‘ UES

A intuicdo por tras do MoR é que cada respondente fornece uma estimativa in-

dependente da prevaléncia da populagdo oculta, e a melhor estimativa geral é a média

dessas "opinies'[6]. Este método, no entanto, é sensivel a respondentes com grau muito

baixo, R, pequeno, pois suas proporc¢oes individuais podem ser extremamente volateis, e

se torna indefinido para individuos com grau zero R, = 0.

Em contrapartida, o estimador RoS, adota uma abordagem no nivel da amostra.
Em vez de calcular proporgoes individuais, o RoS primeiro agrega toda a informacao
disponivel. Ele soma o nimero de contatos na populacao oculta reportado por todos os
respondentes e divide este total pela soma dos graus de todos os respondentes. Matema-

ticamente, o estimador é definido como:

ZUES Cv

S (2.2)
ve v

PRos =

A légica do RoS é tratar o conjunto de todas as conexoes reportadas pela amostra

como um "super grafo'e calcular a prevaléncia do grupo oculto nesse agregado. Uma
consequéncia direta é que os respondentes com maior grau, os hubs, tém uma influéncia

maior no resultado final, pois seus contatos, tanto C, quanto R,, contribuem com mais
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peso para os somatorios [13]. Este comportamento é frequentemente vantajoso em redes
heterogéneas, como as Scale-Free, onde a informacao dos hubs pode ser mais representativa

da estrutura geral da rede.

A distingao entre esses dois estimadores é, portanto, fundamental. O MoR pondera
cada respondente de forma igual, enquanto o RoS pondera cada aresta, ou conexao social,
de forma igual [6]. A escolha entre eles nao ¢ trivial e, como demonstrado por andlises
tedricas e simulagoes, sua performance relativa depende intrinsecamente da topologia da

rede social subjacente [6].

Nessa sentido, a andalise de métodos de estimacao, como o NSUM, sobre diferentes
topologias de rede exige um passo além da descrigao estatica. Como esses métodos operam
sobre amostras da populacao, a incerteza é um elemento inerente. Para quantificar o
desempenho e os erros de um estimador, é necessario tratar a prépria estrutura da rede
nao como fixa, mas como o resultado de um processo aleatério [18]. Essa necessidade
motiva a transicao de um grafo particular para o conceito de modelos de grafos aleatorios,

que definem uma distribui¢ao de probabilidade sobre um conjunto de grafos possiveis [19].

Desta forma, a modelagem de grafos aleatérios é uma ferramenta fundamental
para a compreensao de propriedades estruturais de redes complexas [18, 20]. Esses mode-
los fornecem abstragoes matematicas que permitem a geracao sintética de grafos com
caracteristicas estatisticas controladas, sendo amplamente utilizados em experimentos
computacionais, andlise de algoritmos e estudos de fendmenos emergentes em redes [21].
Entre os modelos mais relevantes destacam-se o modelo de Erdés—Rényi e o modelo de

Barabési—Albert, com avangos recentes em suas aplicagoes para estimagdo em NSUM [4].

Ademais, é crucial notar que os teoremas que fundamentam os limitantes de erro
para esses estimadores frequentemente necessitam que os grafos subjacentes nao possuam
vértices isolados, ou seja, com grau zero, visto que R, = 0 tornaria a razao do estima-
dor MoR indefinida. Essa premissa apresenta um desafio especifico para certos modelos
probabilisticos, como o modelo de Erdés—Rényi, onde a probabilidade de gerar vértices

isolados, embora possa ser pequena, nao é nula.

2.2 Erd6s—Rényi

O modelo de Erdés-Rényi [22, 23] se apresenta em duas variantes principais. A
primeira, G(n, M), considera o conjunto de todos os grafos nao direcionados simples com
n vértices e exatamente M arestas, escolhendo uniformemente um grafo dessa colecao. A
segunda, mais comum na literatura contemporanea, é o modelo G(n, p), no qual cada uma
das (g) possiveis arestas entre pares de vértices é incluida de forma independente com
probabilidade p. Esta independéncia torna o modelo particularmente conveniente para

analises probabilisticas, como o estudo da conectividade ou da emergéncia de componentes
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gigantes.

Uma vez estabelecido o modelo probabilistico para a rede, a tarefa seguinte é
avaliar a confiabilidade de um estimador. O objetivo central é garantir que a probabilidade
de o erro da estimativa ultrapassar um limiar aceitavel seja pequena. Para derivar tais
garantias, uma ferramenta analitica de grande poder é o Limitante da Unido. Para um
conjunto de "eventos ruins'A;, A, ..., Ax cada A; sendo o evento onde a estimativa em
uma amostra ¢ é imprecisa, o limitante afirma que a probabilidade de que ao menos um

deles ocorra é, no maximo, a soma de suas probabilidades individuais:

P(Ua) <3Py (2.3)

A grande vantagem deste limitante é sua generalidade, pois nao requer indepen-
déncia entre os eventos. Ele nos permite calcular um limite superior conservador para a
probabilidade de erro, fornecendo um controle rigoroso sobre a performance do método
em estudo [24].

Apesar de distintos na definigdo, os modelos G(n, M) e G(n,p) compartilham
comportamento assintotico semelhante sob certas condigoes. Especificamente, quando o
nimero esperado de arestas em G(n, p), dado por (g) p, € préoximo de M, diversas proprie-
dades mondtonas, como conectividade ou existéncia de ciclos hamiltonianos, ocorrem com
probabilidade similar & medida que n — oo. Tal equivaléncia é formalizada por resultados
como os de Luczak [18], que provam convergéncia de propriedades entre os dois modelos

sob restri¢coes assintoticas apropriadas.

Entretanto, uma limitacao critica do modelo Erdés—Rényi reside na sua distribui-
¢ao de grau. Por se tratar de um processo com inclusao de arestas independente e homo-
génea, a distribuicao de grau dos vértices segue uma distribuicao binomial, o que resulta
em pouca variabilidade entre os graus dos vértices. Esse comportamento é inconsistente
com o que se observa em muitas redes reais, caracterizadas por alta heterogeneidade de
grau e presenga de vértices altamente conectados [25]. Essa inadequacao motiva a adogao
de modelos mais realistas, como o modelo de configuracao e os baseados em leis de potén-
cia, para representar com maior fidelidade as propriedades topoldgicas de redes naturais

e sociais [26].

Adicionalmente, é pertinente notar que a obtenc¢ao de limitantes de erro analiticos
para o estimador RoS neste modelo envolve desafios tedricos substancialmente maiores em
comparacao ao MoR. Enquanto o MoR opera com a média de razoes individuais, o RoS
constitui uma razao de somas de variaveis aleatorias, introduzindo dependéncias estocas-
ticas complexas entre o numerador e o denominador. Consequentemente, a demonstragao
de limitantes para o RoS nao permite a aplicacdo direta de desigualdades de concen-

tragdo padrao, exigindo o emprego de técnicas analiticas mais sofisticadas para tratar a
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correlacao inerente a estrutura do estimador.

2.3 Barabasi—Albert

O modelo de Barabasi—-Albert, introduzido em 1999 por Albert-Laszl6 Barabasi e
Réka Albert [27], representa um marco na modelagem de redes complexas ao capturar
de forma eficaz a natureza heterogénea da conectividade observada em diversas redes
reais. Diferente de modelos classicos como Erdés—Rényi, que assumem uma probabilidade
uniforme e independente de ligacao entre pares de vértices, o modelo de Barabasi—Albert
incorpora um mecanismo dinamico de ligacao preferencial, pelo qual vértices com maior

grau tém maior probabilidade de receber novas conexoes ao longo da evolucao da rede.

A construcao da rede inicia-se com um pequeno conjunto conectado de vértices
[28]. Em cada passo temporal, um novo vértice é adicionado e conectado a m vértices ja
existentes, sendo a probabilidade de ligagdo com um vértice v proporcional ao seu grau

atual k,. Ou seja, a chance de um novo né se conectar a um né existente é dada por:

P(v) = _h (2.4)

D ku

ueV

Esse processo iterativo gera redes cujas distribuicoes de grau apresentam o que
se chama de lei de poténcia [29]. Nessa distribuicao, a fragdo de vértices com grau k,
denotada por P(k), decai de forma polinomial, isto é, P(k) é proporcional a k¢, onde
¢ € um expoente positivo. Tal comportamento implica que, embora a maioria dos nos
possua um grau relativamente baixo, ha uma cauda pesada na distribuicdo que permite
a presenca de alguns vértices com grau muito elevado. Esse padrao contrasta fortemente
com distribuicoes exponenciais, em que a probabilidade diminui de maneira muito mais

rapida conforme k£ aumenta.

Estudos empiricos e tedricos indicam que, para muitas redes reais, o expoente

costuma estar em torno de 3, ou seja, tipicamente temos:

P(k) ~ k™ (2.5)

Esse resultado destaca o fendmeno “os ricos ficam mais ricos”, caracterizando
redes onde poucos nés acumulam a maior parte das conexdes, enquanto a maioria dos nés
apresenta graus modestos. Essa propriedade é observada em sistemas como a internet,
redes de colaboracao cientifica e redes de interacao social, com aplica¢gbes modernas em

sustentabilidade e inferéncia de redes [30].

Desta forma, este modelo nao segue estritamente o processo de geracao em duas

etapas do modelo teérico considerado por Diaz-Aranda et al. [4], pois seu mecanismo de
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ligacao preferencial é dinamico e nao se baseia em uma sele¢cao uniforme. No entanto, a
distribuicao de grau resultante pela lei de poténcia pode ser utilizada como a distribuicao
Pyeg em simulagoes que buscam emular redes Scale-Free sob o arcabouco tedrico geral. Ele
serve para testar o comportamento dos estimadores em redes heterogéneas, onde a hipdtese

central é que o estimador RoS, ao ponderar pelos graus, corrigira o viés introduzido pelos

hubs.

O modelo de Barabasi—-Albert oferece uma explicacdo teérica para a ubiquidade
das leis de poténcia [31] em sistemas complexos e destaca o papel da dindAmica de cresci-
mento em conjunto com a preferéncia por popularidade como mecanismos formadores de
estruturas topologicas emergentes. Ainda que simplificado, ele permanece um dos modelos
mais influentes e frequentemente utilizados em estudos de redes, com extensoes recentes

para modelagem generativa e anélise de escalabilidade [32].

2.4 Watts—Strogatz

Proposto por Duncan Watts e Steven Strogatz em 1998 [33], o modelo de Watts
Strogatz foi desenvolvido para descrever uma classe de redes que se situa entre as redes
perfeitamente regulares e as completamente aleatorias. O modelo captura com sucesso
uma propriedade ubiqua em muitas redes sociais e biolégicas do mundo real, o fendmeno

de "mundo pequeno”.

Essas redes sao caracterizadas simultaneamente por um alto coeficiente de agrupa-
mento ou clustering [34], indicando que os amigos de um individuo também tendem a ser
amigos entre si, e por um baixo comprimento médio do caminho, significando que quais-
quer dois individuos na rede podem ser alcancados através de uma pequena sequéncia de

intermediarios.

O processo de geracao de uma rede Watts—Strogatz parte de uma estrutura deter-
ministica e introduz aleatoriedade de forma controlada [35]. O algoritmo é definido por
trés parametros, o nimero de vértices n, o grau médio inicial k, e a probabilidade de

religagao p. O processo ocorre em duas etapas.

Primeiramente ocorre a construcao de uma rede regular, que inicia-se com uma
rede em anel, onde os n vértices sao dispostos em um circulo e cada vértice é conectado aos
seus k/2 vizinhos mais préximos em cada diregao [9]. Essa estrutura inicial é altamente
ordenada, com um coeficiente de agrupamento elevado e um comprimento de caminho

longo.

Em seguida, ocorre a etapa da religacao aleatoria de arestas, onde cada aresta da
rede é percorrida sequencialmente. Com uma probabilidade p, uma das extremidades da
aresta ¢ desconectada de seu vizinho original e reconectada a um outro vértice da rede,

escolhido uniformemente ao acaso, com a restrigdo de evitar lacos, ou seja, arestas de um
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vértice para si mesmo, e arestas multiplas.

O parametro p atua como um botao de sintonia que interpola entre a ordem e a
aleatoriedade. Quando p = 0, nenhuma aresta é religada e a rede permanece uma estrutura
regular. Quando p = 1, todas as arestas sao religadas, e a rede resultante se aproxima de

um grafo aleatério de Erd6s—Rényi [36].

O insight fundamental de Watts e Strogatz foi que, para valores intermediarios
de p, mesmo muito pequenos, a introducao de algumas poucas "arestas de atalho'de
longa distancia é suficiente para reduzir drasticamente o comprimento médio do cami-
nho, enquanto a estrutura local, e consequentemente o alto coeficiente de agrupamento,

permanece largamente preservada.

No contexto deste trabalho, a inclusao do modelo de Watts—Strogatz ¢ de particular
importancia e representa um desafio ao arcabougo teérico de Diaz-Aranda et al. [4]. Os
teoremas de limitantes de erro apresentados pelos autores fundamentam-se estritamente
em um processo gerador onde, dado o grau de um vértice, seus vizinhos sao selecionados
uniformemente ao acaso dentre toda a populacao. O modelo de Watts—Strogatz, por sua

vez, nao satisfaz essa premissa de geracao estocastica.

A estrutura de redes "mundo pequeno'emerge de uma topologia inicial regular,
onde as conexodes possuem fortes correlagoes locais que sao apenas parcialmente desfeitas
pelo processo de religagao. Como resultado, a hipotese de independéncia condicional na
escolha dos vizinhos é violada. Portanto, os teoremas analiticos que garantem a precisao
dos estimadores em grafos aleatérios genéricos nao sao diretamente aplicaveis a esta classe
de redes, uma vez que as premissas matematicas sobre as quais foram demonstrados nao

se sustentam nesta topologia especifica.

Essa limitagao tedrica torna a avaliagdo empirica indispensavel. A presenca de
alta coesao local pode introduzir vieses sisteméaticos que nao sao capturados pelos mode-
los Erdés—Rényi ou Barabasi—Albert. Assim, os experimentos com redes Watts-Strogatz
permitirdo analisar a robustez dos estimadores MoR e RoS em cenarios onde as garan-
tias tedricas formais estao ausentes, aproximando a andlise de estruturas sociais reais

caracterizadas por transitividade elevada.
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3 METODO DE PESQUISA

O objetivo central deste trabalho é conduzir uma avaliagdo empirica rigorosa e mul-
tifacetada da acurécia e da robustez dos estimadores MoR e RoS, pertencentes ao NSUM.
Para atingir este objetivo, foi desenvolvida uma metodologia de pesquisa fundamentada

em simulagdo computacional.

A escolha por simulagdo permite a criagdo de ambientes de teste controlados, nos
quais as propriedades estruturais da rede e os pardmetros do processo de amostragem
podem ser sistematicamente variados, possibilitando uma anélise aprofundada do com-
portamento dos estimadores. Este capitulo detalha o arcabougo metodoldgico que sustenta
a pesquisa, descrevendo a estratégia de avaliacao e as métricas utilizadas para quantificar

o desempenho.

A analise em redes sintéticas é estruturada em torno de trés modelos generativos,
cada um selecionado para testar uma hipotese estrutural distinta. A investigagdo inicia-
se com o modelo de Erdés-Rényi, que estabelece uma linha de base com sua estrutura

puramente aleatoria e homogénea.

Em seguida, o modelo de Barabasi-Albert é utilizado para introduzir a heteroge-
neidade na distribuicao de graus e a presenca de hubs, caracteristicas centrais de redes
scale-free. Por fim, o modelo de Watts-Strogatz permite a analise do efeito de alta clus-

terizagao local, uma propriedade definidora de redes de "mundo pequeno'.

Este fluxo de trabalho completo, que abrange desde a configuracao da rede até a
analise dos resultados, é executado de forma padronizada sobre cada uma das topologias
investigadas. A Tabela 1 descreve formalmente cada etapa deste processo, detalhando sua

funcao e o principal resultado gerado em cada passo.

Tabela 1 — Descricao formal das etapas de simulacao e analise.

Passo | Descricao da Etapa Resultado Principal
1 Configuracao da Rede Grafo (G) com topologia definida
2 Definigao da Pop. Oculta Conjunto de vértices (H) e p real
3 Amostragem de Vértices Subconjunto de vértices (5)
4 Coleta de Dados Relacionais | Pares (R,, C,) para cada v € S
5 Calculo dos Estimadores Estimativas pyor € Pros
6 Avaliagao de Desempenho Valores das métricas de erro
7 Agregacao Estatistica Média, desvio padrao e outras estatisticas

A fase inicial de configuracao do cenario estabelece a verdade fundamental contra
a qual as estimativas serao comparadas. Esta fase compreende duas etapas criticas. A pri-

meira ¢ a geragao ou carregamento da estrutura da rede, que serve como o universo social
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da simulacao. Esta etapa envolve a geracao de um grafo a partir de um modelo generativo

especifico, como FErdés-Rényi, utilizando um conjunto de parametros pré-definidos.

A segunda etapa é a definicdo da populagdo oculta H dentro desta rede. Um
subconjunto de vértices é selecionado para compor esta populagao, cuja prevaléncia real,

p=|H|/|V], é calculada e armazenada como o valor de referéncia.

Subsequentemente, a fase de execugao da simulacao emula o processo de pesquisa
de campo do NSUM. O processo inicia-se com a amostragem de um subconjunto de
vértices S da populacao total V', realizado através de uma sele¢ao aleatoria uniforme sem

reposicao. Esta etapa simula a limitagdo pratica de nao poder inquirir toda a populagao.

Para cada vértice v na amostra S, sdo coletadas as informagoes relacionais, o seu
numero total de vizinhos de entrada, R,, e o nimero de vizinhos de entrada que pertencem
a populagao oculta, C,. Com base neste conjunto de dados agregados da amostra, sao
entao calculadas as estimativas da prevaléncia da populacao oculta, prior € Pros, utilizando

as formulagoes matematicas de cada estimador.

Por fim, ocorre a fase de avaliagdo. As estimativas pyor € Pros Obtidas na fase
anterior sao comparadas com a prevaléncia real p, que foi estabelecida na fase de confi-
guragao. O resultado desta etapa é um conjunto de valores que quantificam a acuracia
de cada estimador para uma tnica execugao do processo de amostragem. Para garantir a
significAncia estatistica, o processo é repetido multiplas vezes para cada configuracao de
parametros, permitindo a agregacao dos resultados e a andlise do desempenho médio, da

variabilidade e de outras propriedades estatisticas dos estimadores.

3.1 Meétricas de Avaliacao

A selecao de um conjunto apropriado de métricas é de suma importancia, pois sao
estas que permitem traduzir os resultados brutos da simulagao em conclusoes significativas
sobre a acurdacia, a confiabilidade e a robustez de cada método. Uma tinica métrica é, em

geral, insuficiente para capturar a complexidade do comportamento de um estimador.

Logo, foi adotada uma abordagem de avaliagao empregando quatro métricas distin-
tas, cada uma projetada para iluminar uma faceta particular do desempenho, a magnitude
do erro, o risco de falha significativa, a presenca de viés sistemético e a estabilidade geral

da estimacao.

A métrica primaria utilizada para quantificar a acuracia de uma tinica estimativa é
o erro relativo, aqui denotado por ;. Dada uma prevaléncia real da populacao oculta, p, e
uma prevaléncia estimada, p, a simples diferenca aritmética entre elas ndo é uma medida
ideal, pois seu significado ¢ dependente da escala de p. Para superar esta limitacao, a

métrica de erro é definida como a razao entre o maior e o menor valor entre a estimativa
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e a realidade, conforme a equacao:

Ey = max B,Q (3.1)

p
Esta formulagao apresenta propriedades desejaveis para a analise. Primeiramente,
a métrica é adimensional e normalizada, onde um valor de E,; = 1.0 representa uma
estimativa perfeita, e valores superiores a 1.0 quantificam a magnitude do erro. Em se-
gundo lugar, ela trata superestimagcoes e subestimagoes de forma simétrica; por exemplo,
uma estimativa que seja o dobro do valor real (p = 2p) resulta no mesmo erro de uma

estimativa que seja a metade do valor real (p = 0.5p), sendo Ep; = 2.0 em ambos os casos.

Nos experimentos, o erro médio, calculado como a média aritmética dos valores de
E; sobre multiplas execugoes, serd utilizado como o indicador principal do desempenho

esperado de um estimador.

Embora o erro médio seja um indicador util da tendéncia central do desempenho,
ele pode mascarar a frequéncia de erros de grande magnitude. Um estimador pode ter
um erro médio baixo, mas ainda assim produzir, com uma frequéncia nao desprezivel,

estimativas severamente imprecisas.

Para capturar esta dimensao de risco e confiabilidade, foi definida a métrica de
probabilidade de erro elevado. Esta métrica quantifica a probabilidade de que a métrica

de erro F); exceda um limiar de tolerancia pré-definido, 1 + €. Formalmente, a métrica é:

P[Ey > 1+ (3.2)

Neste trabalho, seréd utilizado um valor de ¢ = 0.05, que corresponde a um limiar de
erro de 5%. A métrica, portanto, responde a uma questao de grande relevancia pratica:
"Qual é a probabilidade de que uma tnica aplicagao do estimador resulte em um erro
superior a 5%?". Um valor baixo para esta métrica indica um estimador mais confidvel
e previsivel, cujos resultados raramente se desviam de forma substancial do valor real,

sendo um critério de avaliagdo de robustez mais rigoroso que o erro médio isoladamente.

Ademais, o viés, ou bias, de um estimador quantifica a sua tendéncia sistematica
de produzir estimativas que sdo, em média, diferentes do valor verdadeiro do parametro.
Enquanto a métrica F),; foca na magnitude do erro, o viés foca na sua direcao. Ele é

formalmente definido como o valor esperado da diferenca entre a estimativa e o valor real:

Bias = E[p — p] (3.3)

Em um contexto de simulagao, o viés ¢ aproximado pela média aritmética desta

diferenga sobre um grande ntimero de execugoes. Um viés positivo indica uma tendéncia
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sistematica a superestimacao, enquanto um viés negativo indica uma tendéncia a subes-

timacao. Um estimador ideal é ndo-enviesado, apresentando um viés préximo de zero.

A anélise do viés é particularmente importante neste trabalho, pois certas topolo-
gias de rede, como as scale-free com seus hubs de alto grau, podem introduzir distor¢oes
sistematicas que afetam os estimadores de forma distinta. Esta métrica, portanto, atua
como uma ferramenta de diagnostico para identificar falhas estruturais na légica de um

estimador quando confrontado com estruturas de rede especificas.

Para obter uma compreensao completa e granular do comportamento do erro, para
além de medidas de resumo como a média ou a probabilidade, ¢ fundamental analisar a
sua distribuicao estatistica completa. A metodologia empregada para esta andlise é a
visualizacao da distribuicao da métrica de erro E); através de diagramas de caixa, ou

bozplots.

O bozxplot revela simultaneamente multiplas propriedades da distribui¢do. A linha
central representa a mediana, uma medida de tendéncia central mais robusta a valores
extremos do que a média. A altura da caixa, que representa o intervalo interquartil, quan-
tifica a dispersao dos 50% centrais dos dados, servindo como um indicador da consisténcia

do estimador, caixas mais curtas implicam em maior consisténcia.

Além disso, o diagrama identifica explicitamente os valores atipicos ou outliers,
que sao os pontos de dados que se situam muito além do corpo principal da distribuicao.
A frequéncia e a magnitude destes outliers sao um indicador direto da instabilidade de

um estimador.

Um método que gera um nimero elevado de outliers com erros de grande magni-
tude ¢é considerado menos robusto, mesmo que sua mediana ou média de erro seja baixa.
Esta analise visual, portanto, complementa as métricas quantitativas, fornecendo um di-

agnostico qualitativo profundo sobre a confiabilidade geral de cada método.
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4 EXPERIMENTOS

Todos os experimentos foram implementados utilizando a linguagem de programa-
¢ao Python, versao 3.12.4. A execucao foi suportada por um ecossistema de bibliotecas de
c6digo aberto amplamente estabelecidas. A biblioteca NetworkX foi a ferramenta central
para a criagdo, manipulacdo e armazenamento das estruturas de grafo. Para as opera-
¢Oes numéricas, geracao de numeros aleatoérios e processos de amostragem, utilizou-se a
biblioteca NumPy.

A organizacgao, agregacao e exportagao dos dados brutos gerados pelas simulagoes
foram gerenciadas pela biblioteca Pandas, que permitiu a estruturacao dos resultados em
formato tabular CSV para anélise subsequente. A visualizagao dos resultados foi realizada

com as bibliotecas Matplotlib e Seaborn.

Para garantir a total reprodutibilidade dos resultados, uma semente pseudoaleato-
ria fixa foi definida no inicio de cada execucao do script de simulagao. Isso assegura que a
sequéncia de nimeros aleatérios utilizada na geracao dos grafos, na selecao da populacao
oculta e na amostragem dos vértices seja a mesma em diferentes execugoes, permitindo

que os resultados possam ser replicados de forma idéntica.

Adicionalmente, foi implementado um sistema de cache para os grafos sintéticos.
Uma vez que a geracao de redes de grande escala é um processo computacionalmente
intensivo, cada grafo gerado foi salvo em disco. Em execugoes subsequentes, o sistema
verifica a existéncia do grafo em cache e o carrega diretamente, otimizando o tempo de

execucao sem comprometer a integridade do experimento.

O procedimento de execucao para todos os experimentos com redes sintéticas se-
guiu um fluxo padronizado para garantir a consisténcia. Para cada combinacao de parame-
tros especifica de um experimento, foram geradas 50 instancias de grafos independentes.
Dentro de cada uma dessas instidncias, uma tnica populagao oculta foi selecionada ale-
atoriamente. Subsequentemente, o processo de amostragem foi executado, e para cada

tamanho de amostra |S| definido, foram extraidas 20 amostras distintas de vértices.

Esta estrutura aninhada, com 50 repeticoes no nivel do grafo e 20 no nivel da
amostragem, totalizando 1.000 execugdes para cada ponto de dados, foi projetada para
garantir que os resultados agregados sejam estatisticamente robustos e que o desempenho
médio nao seja influenciado por artefatos de uma tnica configuracao aleatéria. Em cada
execucao, as estimativas pyor € pPros foram calculadas e armazenadas para a andlise

posterior.
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4.1 Redes de Erdoés-Rényi

O objetivo desta andlise é estabelecer o desempenho dos estimadores em uma topo-
logia puramente estocastica, que serve como uma referéncia fundamental. Neste modelo,
cada possivel aresta direcionada entre dois vértices é formada com uma probabilidade p
independente, resultando em uma rede com estrutura homogénea e desprovida de padroes

complexos.

A configuracdo paramétrica para este experimento foi definida para permitir a
avaliacdo de multiplos fatores, como a escalabilidade em relacdo ao tamanho da rede e o
impacto do esfor¢co de amostragem. Os parametros especificos utilizados estao detalhados
na Tabela 2. A escolha de dois tamanhos de rede n, 100.000 e 1.000.000 de vértices, visa
observar se o desempenho dos estimadores se mantém consistente em diferentes ordens de

magnitude.

O grau médio esperado foi fixado em 30, um valor que gera redes esparsas, porém
conectadas, analogo ao observado em muitas redes sociais de grande escala. A prevaléncia
da populacao oculta p foi definida em 5%, um valor representativo de muitos cendrios de

populacgodes minoritarias ou de dificil acesso.

A variagdo do tamanho da amostra |.S|, de 100 a 10.000, foi definida para reproduzir
o delineamento experimental adotado pelos autores no artigo de referéncia [4]. Esta escolha
permite mapear a curva de convergéncia dos estimadores a medida que mais informacao
é coletada da rede, possibilitando uma comparacao direta com os resultados originais.
Estes valores foram selecionados para cobrir um espectro que vai de uma amostragem
muito esparsa até uma amostragem mais substancial, refletindo um intervalo de esforgos

praticos em pesquisas de campo.

Tabela 2 — Parametros para os experimentos com redes de Erdés-Rényi.

Parametro Valor(es)
Nimero de Vértices (n) 100.000, 1.000.000
Grau Médio Esperado 30

Prevaléncia da Pop. Oculta (p) | 0.05 (5%)

Tamanhos de Amostra (|S]) 100, 500, 1.000, 5.000, 10.000
Nimero de Instancias de Grafo | 50

Amostras por Instancia 20

A execugao deste experimento seguiu o procedimento padrao detalhado no inicio
deste capitulo. A aplicacao desta metodologia para cada combinacao de parametros espe-
cificada na Tabela 2 resultou na geragao de um conjunto de dados abrangente. Estes dados
formam a base para a analise de desempenho dos estimadores em redes homogéneas, cujos

resultados quantitativos sao apresentados no capitulo subsequente de resultados.
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4.2 Redes de Barabasi-Albert

O objetivo deste experimento ¢ avaliar a robustez dos estimadores MoR e RoS em
redes scale-free, cuja estrutura é caracterizada por uma distribuicao de grau que segue
uma lei de poténcia. Este tipo de rede, gerado pelo mecanismo de conexao preferencial,
resulta na emergéncia de um pequeno nimero de vértices com um grau muito elevado, os

chamados hubs, enquanto a maioria dos vértices possui poucas conexoes.

Esta topologia é amplamente reconhecida como um modelo mais fiel para muitas
redes sociais, tecnoldgicas e biologicas do mundo real, tornando este experimento um passo

crucial para avaliar a aplicabilidade pratica dos estimadores.

Uma consideracao metodolégica importante neste experimento diz respeito a na-
tureza do grafo gerado. O modelo canonico de Barabasi-Albert, conforme implementado
na biblioteca NetworkX, produz um grafo nao direcionado. Contudo, a formulagdo dos
estimadores, conforme detalhado no capitulo de Metodologia, baseia-se no conceito de
vizinhanga de entrada in-neighbors, uma propriedade inerente a grafos direcionados. Para
compatibilizar o modelo topoldgico com os requisitos dos estimadores, uma modelagem

de grafo direcionado simétrico foi adotada.

E importante destacar que, embora o trabalho utilizado como referéncia apresente
resultados para redes do tipo scale-free, os autores nao especificam o algoritmo gerador
utilizado. Neste trabalho, adotou-se explicitamente o modelo de Barabasi-Albert, ampla-
mente reconhecido na literatura para a geracao de redes com distribuicao de grau em lei de
poténcia. Ao definir inequivocamente o modelo gerador, este experimento contribui para

a transparéncia e facilita a reprodutibilidade dos resultados para esta classe de topologia.

A partir do grafo nao direcionado gerado, foi criado um grafo direcionado onde
cada aresta nao direcionada {u, v} foi convertida em um par de arestas direcionadas, (u, v)
e (v,u). Sob esta modelagem, o grau de entrada de qualquer vértice v no grafo direcionado
¢é precisamente igual ao seu grau total no grafo nao direcionado original, representando

de forma fiel a nogao de conexdes em uma rede social intrinsecamente reciproca.

Os parametros para esta série de experimentos, detalhados na Tabela 3, foram
selecionados para investigar a interacao entre a topologia scale-free e outras variaveis.
A variacdo do ntmero de vértices n mantém o objetivo de analisar a escalabilidade. O
pardmetro m, fixado em 30, define o nimero de arestas que cada novo vértice forma

durante o processo de crescimento da rede.

Diferentemente do experimento anterior, a prevaléncia da populagdo oculta p foi
variada em trés niveis distintos. Esta variacao é fundamental para investigar se a presenca
de hubs impacta de forma diferente a estimacao de populagoes raras versus populagoes

mais comuns, uma questao central para a aplicabilidade dos estimadores.
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Os tamanhos de amostra |S| e a prevaléncia p seguiram a mesma metodologia
de variagao aplicada ao experimento anterior e ao trabalho base. Esta manutencao dos
pardmetros de amostragem é fundamental para isolar o efeito da mudanca de topologia
no desempenho dos estimadores, em busca de manter a consisténcia comparativa entre os

cenarios.

Tabela 3 — ParAmetros para os experimentos com redes de Barabési-Albert.

Parametro Valor (es)
Nimero de Vértices (n) 25.000, 250.000
Pardmetro de Conexao (m) 30

Prevaléncia da Pop. Oculta (p) | 0.10, 0.20, 0.30

Tamanhos de Amostra (|S]) 100, 500, 1.000, 5.000, 10.000
Numero de Instancias de Grafo | 50

Amostras por Instancia 20

O fluxo de execugao para este experimento também seguiu o procedimento padrao
descrito no inicio deste capitulo, utilizando os parametros definidos na Tabela 3. A ava-
liacao do impacto desta estrutura heterogénea sobre o desempenho dos estimadores sera

detalhada no capitulo de resultados.

4.3 Redes de Watts—Strogatz

Este conjunto de experimentos investiga o desempenho dos estimadores NSUM
em topologias com a propriedade de "mundo pequeno'. As redes de Watts-Strogatz sao
caracterizadas por possuirem, simultaneamente, um caminho médio curto entre quaisquer

dois vértices e um alto coeficiente de clusterizacao.

Esta ultima propriedade, em particular, modela a tendéncia observada em muitas
redes sociais onde os amigos de uma pessoa também tendem a ser amigos entre si, for-
mando comunidades locais coesas. O objetivo deste experimento é, portanto, avaliar se a
alta redundancia de conexoes em vizinhangas locais impacta a eficiéncia dos estimadores

em coletar informagoes sobre a populac¢ao oculta.

Assim como no modelo de Barabasi-Albert, a implementagao canénica do modelo
de Watts-Strogatz gera um grafo nao direcionado. Para manter a consisténcia metodolo-
gica com os experimentos anteriores e atender aos requisitos de formulacao dos estimado-

res, foi adotada a mesma abordagem de modelagem.

Cada grafo nao direcionado gerado foi convertido em um grafo direcionado simé-
trico, onde a vizinhanca de entrada de um vértice corresponde ao conjunto completo de

seus vizinhos na estrutura original.

Os parametros para este experimento, descritos na Tabela 4, foram definidos para

explorar as caracteristicas tnicas do modelo. O parametro k determina o grau médio
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inicial de cada vértice, fixado em 60 para manter uma densidade de rede comparavel a
dos experimentos anteriores. O parametro que determina a probabilidade de religacao p,

foi variado em dois niveis.

Um valor baixo p = 0.01 gera redes com uma estrutura altamente ordenada e
clusterizada, proxima de um anel regular. Um valor mais alto p = 0.1 introduz maior
aleatoriedade na rede, diminuindo a clusterizagao local, mas preservando a propriedade

de "mundo pequeno”.

Esta variacao permite investigar se o desempenho do estimador é sensivel ao nivel
de ordem versus aleatoriedade na estrutura da rede. Os demais parametros, como o tama-
nho da rede n, a prevaléncia da populacao oculta p e os tamanhos de amostra |S|, foram

mantidos consistentes com os experimentos anteriores para facilitar a analise comparativa.

Tabela 4 — Parametros para os experimentos com redes de Watts-Strogatz.

Parametro Valor (es)
Numero de Vértices (n) 25.000, 250.000
Grau Médio (k) 60

Prob. de Religagao (p) 0.01, 0.1

Prevaléncia da Pop. Oculta (p) | 0.10, 0.20, 0.30

Tamanhos de Amostra (|S]) 100, 500, 1.000, 5.000, 10.000
Numero de Instancias de Grafo | 50

Amostras por Instancia 20

A execugao deste experimento seguiu o procedimento padrao detalhado no inicio
deste capitulo, utilizando os parametros definidos na Tabela 4. A andlise quantitativa dos

dados gerados sera apresentada no capitulo de resultados.
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5 RESULTADOS

5.1 Rede Erdés-Rényi

A principal conclusao extraida desta se¢ao é que, no contexto de uma rede aleato-
ria, os estimadores MoR e RoS apresentam desempenho virtualmente idéntico em todas
as métricas avaliadas. A avaliagdo de desempenho foi realizada por meio do erro médio
E)y, onde um valor de 1.0 indica uma estimativa perfeita. A Figura 1 exibe o erro médio

para os estimadores.

Erdés-Rényi Networks: Error vs Sample Size
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Figura 1 — Erro médio dos estimadores MoR e RoS em fun¢do do tamanho da amostra
para redes Erdos-Rényi.

Consistentemente, o erro médio decresce a medida que o tamanho da amostra
aumenta, um comportamento esperado que demonstra a convergéncia dos estimadores.
Notavelmente, a performance dos estimadores MoR e RoS é quase idéntica em todas
as condicoes testadas. O relatorio sumario indica, por exemplo, que para n=1.000.000 e
|S|=1.000, o erro médio do MoR foi de 1.020257, enquanto o do RoS foi de 1.020096, uma

diferenga estatisticamente insignificante.
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Para uma analise mais aprofundada da estabilidade, a Figura 2 apresenta a distri-

buicao completa do erro através de boxplots.

Erd6és-Rényi: Error Distribution vs. Sample Size
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Figura 2 — Distribuicao do erro dos estimadores MoR e RoS para redes Erdds-Rényi,
mostrando mediana, quartis e outliers.

As distribuicoes de erro para MoR e RoS sao visualmente indistinguiveis. Ambos
apresentam mediana préoxima de 1.0 e uma reducao na dispersao e no ntimero de outliers
com o aumento do tamanho da amostra. A analise conjunta do erro médio e de sua
distribuicao demonstra que nao ha vantagem pratica na escolha de um estimador sobre o

outro em termos de acuracia ou consisténcia no contexto de redes Erddés-Rényi.

A anadlise de risco quantifica a probabilidade de se obter uma estimativa com um
erro superior a um limiar de 5%, representada por P[E > 1.05]. A Figura 3 ilustra este

perfil de risco.

O risco de uma estimativa significativamente incorreta é elevado para amostras
pequenas, acima de 50% para |S|=100, mas decresce drasticamente, aproximando-se de
zero para amostras com 5.000 ou mais nés. Assim como nas métricas anteriores, os perfis de
risco para MoR e RoS sao idénticos. A escolha do estimador nao altera a confiabilidade do
resultado, apenas o aumento do tamanho da amostra é uma estratégia eficaz para mitigar

0 risco.

Desta forma, demonstra-se que, para uma rede de topologia aleatéria, ambos os
estimadores sao nao viesados, apresentam perfis de erro e risco idénticos, e sua performance

¢é ditada primariamente pelo tamanho da amostra.
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06 Erd6s-Reényi: Probability of Error > 5% vs. Sample Size
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Figura 3 — Probabilidade de o erro do estimador exceder 5% em func¢ao do tamanho da
amostra para redes Erdds-Rényi.

5.2 Rede Barabasi-Albert

A hipotese central para esta secao é que tal heterogeneidade estrutural ird expor
diferencas de desempenho entre os estimadores MoR e RoS. Os resultados a seguir indicam
que, embora algumas métricas nao revelem uma divergéncia drastica, a analise de risco

demonstra uma vantagem quantificavel e consistente do estimador RoS.

A presenca de hubs é teoricamente uma fonte de viés para o estimador MoR, que
trata a informacgao de cada né amostrado com peso igual, podendo sub-representar a
contribuicao dos hubs. A Figura 4 apresenta a andlise de viés para os estimadores no
modelo Barabasi-Albert.

Contrariamente a forte expectativa tedrica de um viés negativo para o MoR, os
resultados da simulagdo nao demonstram um viés sistematico e significativo para nenhum
dos estimadores. Conforme a Figura 4 e o relatorio sumario, os valores de viés médio para
ambos os estimadores sdo da ordem de 10™* e flutuam entre valores positivos e negativos

dependendo dos parametros de prevaléncia (p) e tamanho da rede (n).

Para n = 25.000 e p = 0.10, o MoR apresenta um pequeno viés positivo, enquanto
para p = 0.20, o viés ¢é negativo. Este comportamento sugere que, para os parametros de
geracao de rede utilizados nesta simulagao, o efeito estrutural que induz o viés pode nao

ser suficientemente pronunciado para se manifestar de forma clara e consistente.

A avaliagdo do erro médio, apresentada na Figura 5, revela uma pequena, porém
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Barabasi-Albert: Estimator Bias vs. Sample Size
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Figura 4 — Andlise de viés dos estimadores MoR e RoS para redes Barabasi-Albert. A
figura é organizada por tamanho de rede (colunas) e tipo de estimador (linhas).

consistente, vantagem do estimador RoS.

Em todos os cenarios, as curvas do estimador RoS se posicionam ligeiramente
abaixo das curvas do estimador MoR. Para n = 250.000, p = 0.10 e |S| = 500, o erro
médio do MoR é de 1.016849, enquanto o do RoS é de 1.014876. Embora a diferenca seja
modesta, sua consisténcia em miltiplas condigdes indica uma superioridade marginal do

RoS em termos de acuracia média.

A métrica que revela a diferenca mais significativa entre os estimadores é a pro-

babilidade de erro superior a 5%, conforme ilustrado na Figura 6.

Nesta andlise, o estimador RoS demonstra uma vantagem clara e consistente sobre
o MoR. Para qualquer condicao de n e p, a curva de risco do RoS esta posicionada abaixo
da curva do MoR, especialmente para tamanhos de amostra menores. Esta diferenca
quantifica o RoS como uma escolha mais confidvel, oferecendo uma menor probabilidade

de produzir uma estimativa com erro significativo.

Diferentemente dos resultados para a rede Erdés-Rényi, a topologia scale-free do
modelo Barabasi-Albert foi suficiente para revelar uma diferenca de desempenho entre
os estimadores. A andlise de risco demonstrou a superioridade do estimador RoS. A sua

capacidade de ponderar a informacao pela conectividade dos ndés, mesmo que o efeito
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BarabAsi-Albert: Mean Error vs. Sample Size
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Figura 5 — Erro médio dos estimadores MoR e RoS em funcao do tamanho da amostra
para redes Barabasi-Albert, facetado pelo tipo de estimador (linhas) e tamanho
da rede (colunas).

sobre o erro médio seja modesto, resulta em um estimador mais confidvel e com menor

probabilidade de falha.

Estes resultados empiricos, que apontam para uma maior confiabilidade do esti-
mador RoS em redes scale-free, corroboram a analise tedrica desenvolvida no artigo de
referéncia [4]. O trabalho original estabelece limitantes de erro analiticos que sdo especi-
ficos para diferentes topologias de rede, reconhecendo que a estrutura da rede subjacente

impacta diretamente o desempenho dos estimadores.

Especificamente para redes scale-free, o artigo deriva um limitante superior de
erro aprimorado para o estimador RoS, que é mais apertado do que os limitantes mais
genéricos aplicaveis a redes aleatorias em geral. A existéncia de um teorema dedicado a
este caso sinaliza que a estrutura de conectividade heterogénea, com a presenca de hubs,
permite uma analise tedrica mais refinada para o RoS. Esta vantagem tedrica encontra

sua contraparte empirica em nossos resultados de simulacao.

Embora as diferengas no erro médio e no viés nao tenham se mostrado proe-
minentes, a métrica mais diretamente relacionada a um limitante superior de erro é a
probabilidade de o erro exceder um determinado limiar. A superioridade clara do RoS

na analise de risco, documentada na Figura 6, é, portanto, a manifestagdo pratica mais
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Barabasi-Albert: Probability of Error > 5% vs. Sample Size
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Figura 6 — Probabilidade de o erro do estimador exceder 5% em funcao do tamanho da
amostra para redes Barabasi-Albert.

direta da vantagem tedrica formalizada pelo artigo de referéncia. A convergéncia entre o
limitante tedrico mais restrito e a menor probabilidade de erro observada na pratica con-
fere um suporte robusto a conclusao de que o estimador RoS é, de fato, mais adequado

para a analise de redes com distribuicao de grau do tipo scale-free.

5.3 Rede Watts-Strogatz

Este modelo é particularmente interessante por interpolar entre uma rede regular
tipo anel com alto coeficiente de agrupamento e uma rede aleatoria, através do parametro
de probabilidade de religacao p. Foram testados cenéarios com baixo valor de p = 0.01, que
preserva a estrutura local e o alto agrupamento, e outro com um valor maior de p = 0.1,

que torna a rede mais proxima de uma topologia aleatoéria.

Avaliar a performance dos estimadores neste modelo apresenta alguns desafios, pois
a analise teérica do artigo base [4] pode nao se aplicar diretamente a grafos gerados por
este processo. A teoria de erro proposta naquele trabalho parte da definicdo de random

networks, na qual os vizinhos de cada no6 sao selecionados de forma uniforme e aleatéria

do restante da rede.

O modelo Watts-Strogatz, contudo, viola esta premissa, tendo em vista que sua
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geracao parte de uma estrutura de rede altamente regular, um anel, e aplica um processo
de religagao local. Este método preserva um alto coeficiente de agrupamento, uma ca-
racteristica de “mundo pequeno” que nao emerge de um processo de selecao de vizinhos

puramente aleatorio e uniforme.

Portanto, esta secdo investiga empiricamente o comportamento dos estimadores
MoR e RoS em um cenario que se desvia das suposic¢oes tedricas. A principal caracteristica
estrutural das redes Watts-Strogatz que se mantém ¢é a sua distribuicao de grau regular
e homogénea, similar a de um grafo aleatorio e distinta da heterogeneidade do modelo
Barabasi-Albert.

A hipotese para esta secao, entdo, é que, mesmo com o processo de selecao de
vizinhos nao-uniforme, a forma da distribuicao de graus continua sendo o fator dominante
na determinacao do viés dos estimadores. Espera-se que, devido a auséncia de hubs, o
desempenho dos estimadores MoR e RoS seja similar, assim como observado no modelo
Erdos-Rényi.

A Figura 7 apresenta a andlise de viés para os estimadores no modelo Watts-

Strogatz, organizada pelos pardmetros de tamanho da rede n e probabilidade de religacao

p.

Watts-Strogatz: Estimator Bias vs. Sample Size

n = 25,000, p = 0.01 n = 25,000, p=0.1

0.0003
WoR (02010
0

-
-
-
-
-
-

R (1h0=0.30)
0.0002 RoS (1o=0.30)

0.0001

-0.0001

-0.0002

n =250,000, p = 0.01 n = 250,000, p = 0.1
0.0003

0.0002

Mean Bias (rho_estimate - rho_true)

0.0001

0.0000 sssesseesssnsnnnnnssessasssssssasssnnns, 2

-0.0001

-0.0002

10° 10° 10* 107 10° 10°

Sample Size |S|

Figura 7 — Andlise de viés dos estimadores MoR (linhas continuas) e RoS (linhas traceja-
das) para redes Watts-Strogatz.
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Em conformidade com o comportamento observado no modelo Erdos-Rényi, ambos
os estimadores se mostram nao viesados no modelo Watts-Strogatz. Em todos os quatro
subplots, que cobrem as variacoes de n e p, as linhas de viés para MoR e RoS flutuam em
torno da linha de referéncia y = 0. Este resultado, embora nao constitua uma validacao
direta da teoria do artigo de base devido as diferengas no processo de geragao do grafo, é

o desfecho esperado.

A auséncia de viés sistematico reforga a hipotese de que a principal causa do viés
do estimador MoR ¢ a heterogeneidade da distribuicao de graus, ou seja, a presenca de
hubs, e nao outras propriedades estruturais como o alto coeficiente de agrupamento. Uma
vez que o modelo Watts-Strogatz possui uma distribuicao de grau homogénea, era de se
esperar que os estimadores tivessem um desempenho similar e nao viesado, o que os dados

confirmam.

As demais métricas de avaliagao, erro médio, distribuicdo do erro e probabilidade
de erro significativo, apresentam um comportamento unissono e conclusivo. A Figura 8 é

representativas de todos os resultados.

Watts-Strogatz: Mean Error vs. Sample Size
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Figura 8 — Erro médio dos estimadores MoR e RoS em fun¢ao do tamanho da amostra
para redes Watts-Strogatz.

As linhas e distribuicoes para os estimadores MoR e RoS sao praticamente indis-

tinguiveis. Os valores de erro, desvio padrao e probabilidade sao idénticos até a quarta
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ou quinta casa decimal na maioria dos casos. Por exemplo, para n = 250.000, p = 0.01,
p = 0.10 e |S| = 500, o erro médio do MoR ¢é de 1.013611, e o do RoS é de 1.013609. A

probabilidade de erro significativo para a mesma condicao é de 0.009000 para ambos.

Assim, conclui-se que a performance dos estimadores MoR e RoS ¢ idéntica em re-
des com distribuicao de grau regular, independentemente de a rede possuir uma estrutura
local com alto coeficiente de agrupamento p = 0.01 ou ser mais aleatéria p = 0.1. Isso
demonstra que a propriedade estrutural que diferencia o desempenho dos estimadores nao
¢é o agrupamento local representado pela caracteristica de "mundo pequeno', mas sim a

heterogeneidade da distribui¢ao de conectividade.
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6 CONCLUSAO

Este trabalho propos-se a investigar uma questao central para a aplicacao do
NSUM, a influéncia da topologia da rede no desempenho e na confiabilidade de seus
dois principais estimadores, o MoR e o RoS sob diferentes topologias de grafos aleatérios

por meio de simulagoes computacionais medindo o erro estimativo em cada cenario.

Para responder a esta questdo, foi conduzida uma andlise empirica multifacetada
em trés modelos de rede distintos. Os resultados obtidos nos modelos de Erdds-Rényi e
Watts-Strogatz estabeleceram uma linha de base fundamental. Em ambas as topologias,
caracterizadas por uma distribuicao de grau homogeénea, o desempenho dos estimadores
MoR e RoS mostrou-se virtualmente idéntico em todas as métricas de avaliagdo, erro

médio, viés, distribui¢do do erro e risco de falha.

Esta equivaléncia em redes aleatérias e de mundo pequeno demonstrou que pro-
priedades como a clusterizacao local ndo sao o fator determinante que diferencia os esti-
madores. A divergéncia de desempenho, portanto, deveria emergir em uma topologia com

caracteristicas estruturais distintas.

A anélise no modelo de Barabasi-Albert, que gera redes do tipo scale-free, reve-
lou esta diferenciagao. Embora a diferenca no erro médio tenha sido modesta e um viés
sistematico forte nao tenha sido consistentemente observado nos parametros testados, a
analise de risco validou o resultado tedrico do estimador RoS. Neste cenario especifico, o
RoS apresentou uma probabilidade consistentemente menor de produzir estimativas com

erro significativo, especialmente com amostras de menor tamanho.

Os resultados, em conjunto, permitem levantar um hipdtese ao problema inicial.
A superioridade de um estimador sobre o outro nao é absoluta, mas sim dependente da
estrutura da rede. A propriedade que se mostrou crucial foi a heterogeneidade da distribu-
icdo de grau. A presenca de hubs, caracteristica central das redes scale-free, é o fator que
torna o estimador RoS tecnicamente superior em alguns cenarios, ndo necessariamente
por uma acuracia média drasticamente maior, mas por sua maior confiabilidade e menor

risco.

Como limitacao, nota-se que o viés teoricamente esperado para o MoR no modelo
Barabasi-Albert ndo se manifestou de forma proeminente, o que pode ser atribuido aos
parametros de geracao de rede especificos utilizados. Trabalhos futuros poderiam explorar
uma gama mais ampla destes parametros para investigar as condigoes em que este viés se

torna mais acentuado.

Adicionalmente, futuras investigagoes poderiam estender esta analise para outros

modelos de rede, como os baseados em blocos estocasticos, e incluir a avaliacao de estra-
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tégias de amostragem mais complexas, comparando seus efeitos sobre o desempenho dos

estimadores.
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