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“Todos os modelos estão errados, mas alguns são úteis.”
(George E. P. Box)
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RESUMO

A estimação do tamanho de populações de difícil acesso é um desafio central em diversas
áreas, para o qual o Método Network Scale-Up (NSUM) se apresenta como uma ferra-
menta proeminente. A acurácia deste método, contudo, depende da escolha entre seus
estimadores e da topologia da rede social subjacente. Este trabalho conduz um estudo
experimental comparativo para avaliar a robustez e a precisão dos estimadores Média
das Razões (MoR) e Razão das Somas (RoS) do NSUM sob diferentes topologias. Por
meio de simulação computacional, o desempenho dos estimadores foi avaliado em três
modelos de grafos aleatórios: Erdős-Rényi, Barabási-Albert e Watts-Strogatz. Os resulta-
dos demonstram que em redes com distribuição de grau homogênea como Erdős-Rényi e
Watts-Strogatz, os estimadores MoR e RoS apresentam desempenho virtualmente idên-
tico. Contudo, em redes do tipo scale-free como Barabási-Albert, caracterizadas pela
heterogeneidade de grau, o estimador RoS revela uma superioridade, apresentando menor
risco de erro significativo e maior confiabilidade. Conclui-se que a heterogeneidade da
distribuição de grau é o fator estrutural determinante para a escolha do estimador, com
o RoS sendo a opção mais robusta em cenários que emulam redes sociais realistas com a
presença de hubs.

Palavras-chave: Network Scale-Up. Grafos Aleatórios. Estimadores de Rede. Análise de
Erro. Simulação Computacional.
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ABSTRACT

Estimating the size of hard-to-reach populations is a key challenge across several fields,
for which the Network Scale-Up Method (NSUM) stands out as a prominent tool. The
accuracy of this method, however, depends on the choice of its estimators and the under-
lying social network topology. This work conducts a comparative experimental study to
assess the robustness and precision of NSUM’s Mean of Ratios (MoR) and Ratio of Sums
(RoS) estimators under different topologies. Through computational simulation, the per-
formance of the estimators was evaluated on three random graph models: Erdős-Rényi,
Barabási-Albert, and Watts-Strogatz. The results demonstrate that in networks with a
homogeneous degree distribution such as Erdős-Rényi and Watts-Strogatz, the MoR and
RoS estimators exhibit virtually identical performance. However, in scale-free networks
such as Barabási-Albert, characterized by degree heterogeneity, the RoS estimator reveals
a superior performance, showing a lower risk of significant error and greater reliability.
It is concluded that the heterogeneity of the degree distribution is the decisive structural
factor for estimator selection, with RoS being the more robust option in scenarios that
emulate realistic social networks with the presence of hubs.

Keywords: Network Scale-Up. Random Graphs. Network Estimators. Error Analysis.
Computational Simulation.
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1 INTRODUÇÃO

A estimação do tamanho de populações de difícil acesso, como grupos afetados
por desastres naturais, portadores de doenças estigmatizadas ou membros de redes clan-
destinas, representa um desafio fundamental para a epidemiologia, as ciências sociais e a
formulação de políticas públicas [1]. Métodos de enumeração direta são frequentemente
inviáveis devido à natureza dispersa ou sigilosa desses grupos. Nesse contexto, a análise de
redes sociais emerge como uma abordagem poderosa, permitindo inferir características de
uma população inteira a partir das conexões locais de um subconjunto de seus membros
[2].

Uma das técnicas mais proeminentes para essa finalidade é o Método Network
Scale-Up (NSUM), uma abordagem de estimação indireta que utiliza Dados Relacionais
Agregados, do inglês Aggregated Relational Data (ARD) [3]. O método baseia-se em in-
quirir uma amostra de indivíduos sobre o tamanho de suas redes pessoais e quantos
membros da população-alvo eles conhecem. A partir desses dados, dois estimadores são
predominantemente utilizados para calcular a prevalência da população oculta, a Média
das Razões, do inglês Mean of Ratios (MoR), que pondera cada respondente igualmente,
e a Razão das Somas, do inglês Ratio of Sums (RoS), que implicitamente dá mais peso
aos indivíduos mais conectados [4].

A precisão do NSUM, contudo, não é absoluta e sua performance é intrinsecamente
dependente da topologia subjacente da rede social [5]. A escolha entre os estimadores MoR
e RoS não é trivial, e trabalhos teóricos sugerem que a presença de heterogeneidade na
distribuição de conectividade, como a existência de hubs, vértices altamente conectados,
pode introduzir vieses e afetar a robustez de cada estimador de maneira distinta [6, 4].
Enquanto limitantes de erro analíticos fornecem uma base teórica, a validação empírica
de seu comportamento em diferentes estruturas de rede é crucial para compreender sua
aplicabilidade prática.

O objetivo central deste trabalho é, portanto, conduzir um estudo experimental
e comparativo para avaliar a acurácia e a robustez dos estimadores MoR e RoS sob
diferentes topologias de grafos aleatórios. Para isso, foi desenvolvida uma metodologia de
pesquisa baseada em simulação computacional que espelha o protocolo experimental de
Díaz-Aranda et al. [4], garantindo a comparabilidade direta dos resultados, o desempenho
dos estimadores será sistematicamente medido em três modelos de rede canônicos, cada
um representando uma propriedade estrutural distinta: o modelo de Erdős-Rényi, como
linha de base de uma rede homogênea e aleatória; o modelo de Barabási-Albert, para
investigar o impacto da heterogeneidade de grau em redes scale-free; e o modelo de Watts-
Strogatz, para analisar o efeito da alta clusterização local característica de redes de "mundo
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pequeno".

Este trabalho está estruturado da seguinte forma. O Capítulo 2 apresenta a fun-
damentação teórica, detalhando o método NSUM, seus estimadores e os três modelos
de grafos aleatórios utilizados como bancada de testes. O Capítulo 3 descreve a meto-
dologia de pesquisa, incluindo a organização da simulação e as métricas de avaliação de
desempenho. No Capítulo 4, são apresentados os parâmetros específicos e a configuração
dos experimentos para cada topologia de rede. Os resultados quantitativos obtidos nas
simulações são detalhados e analisados no Capítulo 5. Por fim, o Capítulo 6 sintetiza
as conclusões do estudo, discute as implicações dos resultados e aponta direções para
trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

As redes sociais podem ser modeladas formalmente como grafos [7, 8], onde os
indivíduos são representados por vértices e as relações entre eles por arestas. Essa abs-
tração permite o uso de ferramentas matemáticas e computacionais para analisar padrões
de conexão, difusão de informação, e estrutura relacional em diferentes contextos [9]. No
caso de redes sociais humanas, as arestas geralmente representam interações como ami-
zade, comunicação, colaboração ou influência, facilitando estudos sobre dinâmica social e
comportamental [2].

O presente trabalho foca na análise de um método de estimação populacional que
opera sobre essas redes, tomando como referência central o arcabouço teórico e experi-
mental estabelecido recentemente por Díaz-Aranda et al. [4]. Para validar os limitantes
analíticos propostos pelos autores e avaliar a robustez do método, é fundamental testá-lo
em ambientes controlados que simulam diferentes estruturas de rede observadas no mundo
real. Esta fundamentação teórica, portanto, está organizada da seguinte forma: primeiro,
apresenta-se o método central de estudo, o NSUM e seus estimadores MoR e RoS, con-
forme as definições do trabalho base; em seguida, justifica-se a necessidade de modelos
de grafos aleatórios para a análise de erro; por fim, detalham-se os três modelos de rede
sintética que servirão como bancadas de teste para a avaliação empírica.

2.1 O Método Network Scale-Up (NSUM)

O NSUM, emerge como uma abordagem indireta para estimar o tamanho de po-
pulações de difícil acesso [1, 10] em cenários onde a enumeração direta através de listas
administrativas ou inquéritos convencionais é inviável, seja devido à raridade do grupo,
estigmatização associada, ou ausência de uma amostragem completa, o NSUM oferece
uma alternativa metodológica. A técnica explora a estrutura inerente das redes sociais
dos indivíduos para inferir características populacionais agregadas [11].

O princípio fundamental do NSUM reside na utilização de ARD [3]. Estes dados
são coletados por meio de perguntas diretas aos respondentes de um inquérito amostral,
tipicamente na forma "Quantos X você conhece?", onde X representa membros da popula-
ção de interesse. Essencialmente, o método assume que a rede pessoal de um respondente
reflete, em certa medida, a composição da população geral.

A formulação básica [12] do estimador NSUM requer duas informações principais
de cada respondente 𝑖, o número de pessoas que ele conhece pertencentes ao grupo de
interesse 𝑘, denotado por 𝑦𝑖𝑘, e o tamanho total de sua rede pessoal, ou seu grau, denotado
por 𝑑𝑖. O método então calcula [13] a proporção de membros do grupo 𝑘 na população
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geral 𝑝𝑘 = 𝑁𝑘/𝑁 , onde 𝑁𝑘 é o tamanho desconhecido do grupo e 𝑁 o tamanho total
da população estimando essa proporção 𝑝𝑘 através da razão entre o número total de
indivíduos do grupo 𝑘 conhecidos por todos os respondentes na amostra e o tamanho
total das redes de todos os respondentes.

A estimativa do tamanho da população 𝑁𝑘 é então obtida multiplicando-se essa
proporção estimada pelo tamanho total conhecido da população 𝑁 , resultando em 𝑁̂𝑘 =
𝑝𝑘 × 𝑁 . Este estimador básico, contudo, fundamenta-se em pressupostos significativos,
como a mistura aleatória na rede [5], com ausência de homofilia ou barreiras sociais
sistemáticas, a transmissão perfeita de informação, onde o respondente sabe que o contato
pertence ao grupo 𝑘, a ausência de erros de recordação por parte do respondente, e a
acurácia na estimação do grau 𝑑𝑖.

O trabalho [4] propõe um modelo geral para a construção de redes aleatórias,
que serve como um ambiente controlado para o estudo de erros. Nesse modelo, a rede 𝐺

sobre uma população 𝑉 é gerada através de um processo estocástico independente para
cada vértice 𝑣 ∈ 𝑉 , em duas etapas, na primeira, o vértice 𝑣 sorteia um grau 𝑅𝑣 de uma
distribuição de graus predefinida 𝑃𝑑𝑒𝑔, em segundo lugar, dado 𝑅𝑣, o vértice seleciona 𝑅𝑣

vizinhos de forma uniforme e aleatória do conjunto de todos os outros vértices possíveis
𝑉 ∖ {𝑣}.

Neste framework, as variáveis de interesse para o NSUM, como a proporção de
vizinhos ocultos de cada indivíduo, tornam-se dependentes entre si. Essa dependência
impede a aplicação direta de limitantes de concentração padrão, que tipicamente exigem
independência das variáveis aleatórias [14]. O desafio analítico, portanto, reside em derivar
limitantes de erro válidos mesmo na presença dessa correlação, o que os autores abordam
demonstrando correlação negativa e utilizando independência condicional.

Na prática, desvios desses pressupostos podem introduzir vieses consideráveis. A
heterogeneidade na propensão dos indivíduos a conhecer membros do grupo-alvo gera
efeitos de barreira e superdispersão. Erros de transmissão ocorrem quando o respondente
desconhece a afiliação do contato ao grupo, comum em populações estigmatizadas. Erros
de recordação sistemáticos, onde o respondente subestima ou superestima o número de
conhecidos em grupos grandes ou pequenos, respectivamente, também afetam a precisão
[15].

A estimação precisa do grau 𝑑𝑖 de cada respondente é outro desafio central. Di-
versas técnicas foram propostas, incluindo métodos de enumeração direta, inviáveis em
larga escala, métodos de soma por categorias relacionais, e o próprio método scale-up
aplicado a populações de tamanho conhecido, como pessoas com nomes comuns, para
calibrar a estimação do grau [5]. A definição operacional de "conhecer"alguém é crucial e
pode impactar significativamente os resultados.
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Modelos estatísticos mais sofisticados foram desenvolvidos para mitigar o impacto
dessas fontes de erro [16, 6, 17]. Abordagens hierárquicas e Bayesianas buscam modelar
explicitamente a superdispersão, corrigir erros de recordação através de curvas de calibra-
ção, ajustar para efeitos de barreira considerando a estrutura social, e incorporar incerteza
na estimação do grau e nos erros de transmissão. Esses refinamentos tornam o NSUM uma
ferramenta mais robusta, embora demandem dados adicionais ou pressupostos mais com-
plexos.

O presente trabalho analisa duas abordagens, a Média das Razões (MoR) e a
Razão das Somas (RoS), para calcular a proporção estimada da população oculta, 𝑝𝑘 [4].
Embora ambos utilizem os mesmos dados de entrada, o grau do respondente e o número
de contatos no grupo-alvo, eles diferem fundamentalmente na maneira como agregam essa
informação, o que acarreta implicações diretas na robustez e no viés do resultado final.

O estimador MoR, representa uma abordagem no nível do indivíduo. Para cada
respondente 𝑣 na amostra 𝑆, calcula-se primeiro a proporção da população oculta den-
tro de sua rede pessoal. Esta proporção individual, 𝑌𝑣, é simplesmente a razão entre o
número de seus vizinhos na população oculta 𝐶𝑣 e seu grau total 𝑅𝑣. A estimativa final
é então a média aritmética simples dessas proporções individuais sobre toda a amostra.
Formalmente:

𝑝MoR = 1
|𝑆|

∑︁
𝑣∈𝑆

𝑌𝑣 = 1
|𝑆|

∑︁
𝑣∈𝑆

𝐶𝑣

𝑅𝑣

(2.1)

A intuição por trás do MoR é que cada respondente fornece uma estimativa in-
dependente da prevalência da população oculta, e a melhor estimativa geral é a média
dessas "opiniões"[6]. Este método, no entanto, é sensível a respondentes com grau muito
baixo, 𝑅𝑣 pequeno, pois suas proporções individuais podem ser extremamente voláteis, e
se torna indefinido para indivíduos com grau zero 𝑅𝑣 = 0.

Em contrapartida, o estimador RoS, adota uma abordagem no nível da amostra.
Em vez de calcular proporções individuais, o RoS primeiro agrega toda a informação
disponível. Ele soma o número de contatos na população oculta reportado por todos os
respondentes e divide este total pela soma dos graus de todos os respondentes. Matema-
ticamente, o estimador é definido como:

𝑝RoS =
∑︀

𝑣∈𝑆 𝐶𝑣∑︀
𝑣∈𝑆 𝑅𝑣

(2.2)

A lógica do RoS é tratar o conjunto de todas as conexões reportadas pela amostra
como um "super grafo"e calcular a prevalência do grupo oculto nesse agregado. Uma
consequência direta é que os respondentes com maior grau, os hubs, têm uma influência
maior no resultado final, pois seus contatos, tanto 𝐶𝑣 quanto 𝑅𝑣, contribuem com mais
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peso para os somatórios [13]. Este comportamento é frequentemente vantajoso em redes
heterogêneas, como as Scale-Free, onde a informação dos hubs pode ser mais representativa
da estrutura geral da rede.

A distinção entre esses dois estimadores é, portanto, fundamental. O MoR pondera
cada respondente de forma igual, enquanto o RoS pondera cada aresta, ou conexão social,
de forma igual [6]. A escolha entre eles não é trivial e, como demonstrado por análises
teóricas e simulações, sua performance relativa depende intrinsecamente da topologia da
rede social subjacente [6].

Nessa sentido, a análise de métodos de estimação, como o NSUM, sobre diferentes
topologias de rede exige um passo além da descrição estática. Como esses métodos operam
sobre amostras da população, a incerteza é um elemento inerente. Para quantificar o
desempenho e os erros de um estimador, é necessário tratar a própria estrutura da rede
não como fixa, mas como o resultado de um processo aleatório [18]. Essa necessidade
motiva a transição de um grafo particular para o conceito de modelos de grafos aleatórios,
que definem uma distribuição de probabilidade sobre um conjunto de grafos possíveis [19].

Desta forma, a modelagem de grafos aleatórios é uma ferramenta fundamental
para a compreensão de propriedades estruturais de redes complexas [18, 20]. Esses mode-
los fornecem abstrações matemáticas que permitem a geração sintética de grafos com
características estatísticas controladas, sendo amplamente utilizados em experimentos
computacionais, análise de algoritmos e estudos de fenômenos emergentes em redes [21].
Entre os modelos mais relevantes destacam-se o modelo de Erdős–Rényi e o modelo de
Barabási–Albert, com avanços recentes em suas aplicações para estimação em NSUM [4].

Ademais, é crucial notar que os teoremas que fundamentam os limitantes de erro
para esses estimadores frequentemente necessitam que os grafos subjacentes não possuam
vértices isolados, ou seja, com grau zero, visto que 𝑅𝑣 = 0 tornaria a razão do estima-
dor MoR indefinida. Essa premissa apresenta um desafio específico para certos modelos
probabilísticos, como o modelo de Erdős–Rényi, onde a probabilidade de gerar vértices
isolados, embora possa ser pequena, não é nula.

2.2 Erdős–Rényi

O modelo de Erdős–Rényi [22, 23] se apresenta em duas variantes principais. A
primeira, 𝐺(𝑛, 𝑀), considera o conjunto de todos os grafos não direcionados simples com
𝑛 vértices e exatamente 𝑀 arestas, escolhendo uniformemente um grafo dessa coleção. A
segunda, mais comum na literatura contemporânea, é o modelo 𝐺(𝑛, 𝑝), no qual cada uma
das

(︁
𝑛
2

)︁
possíveis arestas entre pares de vértices é incluída de forma independente com

probabilidade 𝑝. Esta independência torna o modelo particularmente conveniente para
análises probabilísticas, como o estudo da conectividade ou da emergência de componentes
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gigantes.

Uma vez estabelecido o modelo probabilístico para a rede, a tarefa seguinte é
avaliar a confiabilidade de um estimador. O objetivo central é garantir que a probabilidade
de o erro da estimativa ultrapassar um limiar aceitável seja pequena. Para derivar tais
garantias, uma ferramenta analítica de grande poder é o Limitante da União. Para um
conjunto de "eventos ruins"𝐴1, 𝐴2, . . . , 𝐴𝑘 cada 𝐴𝑖 sendo o evento onde a estimativa em
uma amostra 𝑖 é imprecisa, o limitante afirma que a probabilidade de que ao menos um
deles ocorra é, no máximo, a soma de suas probabilidades individuais:

𝑃

(︃
𝑘⋃︁

𝑖=1
𝐴𝑖

)︃
≤

𝑘∑︁
𝑖=1

𝑃 (𝐴𝑖) (2.3)

A grande vantagem deste limitante é sua generalidade, pois não requer indepen-
dência entre os eventos. Ele nos permite calcular um limite superior conservador para a
probabilidade de erro, fornecendo um controle rigoroso sobre a performance do método
em estudo [24].

Apesar de distintos na definição, os modelos 𝐺(𝑛, 𝑀) e 𝐺(𝑛, 𝑝) compartilham
comportamento assintótico semelhante sob certas condições. Especificamente, quando o
número esperado de arestas em 𝐺(𝑛, 𝑝), dado por

(︁
𝑛
2

)︁
𝑝, é próximo de 𝑀 , diversas proprie-

dades monótonas, como conectividade ou existência de ciclos hamiltonianos, ocorrem com
probabilidade similar à medida que 𝑛 → ∞. Tal equivalência é formalizada por resultados
como os de Luczak [18], que provam convergência de propriedades entre os dois modelos
sob restrições assintóticas apropriadas.

Entretanto, uma limitação crítica do modelo Erdős–Rényi reside na sua distribui-
ção de grau. Por se tratar de um processo com inclusão de arestas independente e homo-
gênea, a distribuição de grau dos vértices segue uma distribuição binomial, o que resulta
em pouca variabilidade entre os graus dos vértices. Esse comportamento é inconsistente
com o que se observa em muitas redes reais, caracterizadas por alta heterogeneidade de
grau e presença de vértices altamente conectados [25]. Essa inadequação motiva a adoção
de modelos mais realistas, como o modelo de configuração e os baseados em leis de potên-
cia, para representar com maior fidelidade as propriedades topológicas de redes naturais
e sociais [26].

Adicionalmente, é pertinente notar que a obtenção de limitantes de erro analíticos
para o estimador RoS neste modelo envolve desafios teóricos substancialmente maiores em
comparação ao MoR. Enquanto o MoR opera com a média de razões individuais, o RoS
constitui uma razão de somas de variáveis aleatórias, introduzindo dependências estocás-
ticas complexas entre o numerador e o denominador. Consequentemente, a demonstração
de limitantes para o RoS não permite a aplicação direta de desigualdades de concen-
tração padrão, exigindo o emprego de técnicas analíticas mais sofisticadas para tratar a
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correlação inerente à estrutura do estimador.

2.3 Barabási–Albert

O modelo de Barabási–Albert, introduzido em 1999 por Albert-László Barabási e
Réka Albert [27], representa um marco na modelagem de redes complexas ao capturar
de forma eficaz a natureza heterogênea da conectividade observada em diversas redes
reais. Diferente de modelos clássicos como Erdős–Rényi, que assumem uma probabilidade
uniforme e independente de ligação entre pares de vértices, o modelo de Barabási–Albert
incorpora um mecanismo dinâmico de ligação preferencial, pelo qual vértices com maior
grau têm maior probabilidade de receber novas conexões ao longo da evolução da rede.

A construção da rede inicia-se com um pequeno conjunto conectado de vértices
[28]. Em cada passo temporal, um novo vértice é adicionado e conectado a 𝑚 vértices já
existentes, sendo a probabilidade de ligação com um vértice 𝑣 proporcional ao seu grau
atual 𝑘𝑣. Ou seja, a chance de um novo nó se conectar a um nó existente é dada por:

𝑃 (𝑣) = 𝑘𝑣∑︁
𝑢∈𝑉

𝑘𝑢

(2.4)

Esse processo iterativo gera redes cujas distribuições de grau apresentam o que
se chama de lei de potência [29]. Nessa distribuição, a fração de vértices com grau 𝑘,
denotada por 𝑃 (𝑘), decai de forma polinomial, isto é, 𝑃 (𝑘) é proporcional a 𝑘−𝑐, onde
𝑐 é um expoente positivo. Tal comportamento implica que, embora a maioria dos nós
possua um grau relativamente baixo, há uma cauda pesada na distribuição que permite
a presença de alguns vértices com grau muito elevado. Esse padrão contrasta fortemente
com distribuições exponenciais, em que a probabilidade diminui de maneira muito mais
rápida conforme 𝑘 aumenta.

Estudos empíricos e teóricos indicam que, para muitas redes reais, o expoente
costuma estar em torno de 3, ou seja, tipicamente temos:

𝑃 (𝑘) ∼ 𝑘−3 (2.5)

Esse resultado destaca o fenômeno “os ricos ficam mais ricos”, caracterizando
redes onde poucos nós acumulam a maior parte das conexões, enquanto a maioria dos nós
apresenta graus modestos. Essa propriedade é observada em sistemas como a internet,
redes de colaboração científica e redes de interação social, com aplicações modernas em
sustentabilidade e inferência de redes [30].

Desta forma, este modelo não segue estritamente o processo de geração em duas
etapas do modelo teórico considerado por Díaz-Aranda et al. [4], pois seu mecanismo de
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ligação preferencial é dinâmico e não se baseia em uma seleção uniforme. No entanto, a
distribuição de grau resultante pela lei de potência pode ser utilizada como a distribuição
𝑃deg em simulações que buscam emular redes Scale-Free sob o arcabouço teórico geral. Ele
serve para testar o comportamento dos estimadores em redes heterogêneas, onde a hipótese
central é que o estimador RoS, ao ponderar pelos graus, corrigirá o viés introduzido pelos
hubs.

O modelo de Barabási–Albert oferece uma explicação teórica para a ubiquidade
das leis de potência [31] em sistemas complexos e destaca o papel da dinâmica de cresci-
mento em conjunto com a preferência por popularidade como mecanismos formadores de
estruturas topológicas emergentes. Ainda que simplificado, ele permanece um dos modelos
mais influentes e frequentemente utilizados em estudos de redes, com extensões recentes
para modelagem generativa e análise de escalabilidade [32].

2.4 Watts–Strogatz

Proposto por Duncan Watts e Steven Strogatz em 1998 [33], o modelo de Watts
Strogatz foi desenvolvido para descrever uma classe de redes que se situa entre as redes
perfeitamente regulares e as completamente aleatórias. O modelo captura com sucesso
uma propriedade ubíqua em muitas redes sociais e biológicas do mundo real, o fenômeno
de "mundo pequeno".

Essas redes são caracterizadas simultaneamente por um alto coeficiente de agrupa-
mento ou clustering [34], indicando que os amigos de um indivíduo também tendem a ser
amigos entre si, e por um baixo comprimento médio do caminho, significando que quais-
quer dois indivíduos na rede podem ser alcançados através de uma pequena sequência de
intermediários.

O processo de geração de uma rede Watts–Strogatz parte de uma estrutura deter-
minística e introduz aleatoriedade de forma controlada [35]. O algoritmo é definido por
três parâmetros, o número de vértices 𝑛, o grau médio inicial 𝑘, e a probabilidade de
religação 𝑝. O processo ocorre em duas etapas.

Primeiramente ocorre a construção de uma rede regular, que inicia-se com uma
rede em anel, onde os 𝑛 vértices são dispostos em um círculo e cada vértice é conectado aos
seus 𝑘/2 vizinhos mais próximos em cada direção [9]. Essa estrutura inicial é altamente
ordenada, com um coeficiente de agrupamento elevado e um comprimento de caminho
longo.

Em seguida, ocorre a etapa da religação aleatória de arestas, onde cada aresta da
rede é percorrida sequencialmente. Com uma probabilidade 𝑝, uma das extremidades da
aresta é desconectada de seu vizinho original e reconectada a um outro vértice da rede,
escolhido uniformemente ao acaso, com a restrição de evitar laços, ou seja, arestas de um
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vértice para si mesmo, e arestas múltiplas.

O parâmetro 𝑝 atua como um botão de sintonia que interpola entre a ordem e a
aleatoriedade. Quando 𝑝 = 0, nenhuma aresta é religada e a rede permanece uma estrutura
regular. Quando 𝑝 = 1, todas as arestas são religadas, e a rede resultante se aproxima de
um grafo aleatório de Erdős–Rényi [36].

O insight fundamental de Watts e Strogatz foi que, para valores intermediários
de 𝑝, mesmo muito pequenos, a introdução de algumas poucas "arestas de atalho"de
longa distância é suficiente para reduzir drasticamente o comprimento médio do cami-
nho, enquanto a estrutura local, e consequentemente o alto coeficiente de agrupamento,
permanece largamente preservada.

No contexto deste trabalho, a inclusão do modelo de Watts–Strogatz é de particular
importância e representa um desafio ao arcabouço teórico de Díaz-Aranda et al. [4]. Os
teoremas de limitantes de erro apresentados pelos autores fundamentam-se estritamente
em um processo gerador onde, dado o grau de um vértice, seus vizinhos são selecionados
uniformemente ao acaso dentre toda a população. O modelo de Watts–Strogatz, por sua
vez, não satisfaz essa premissa de geração estocástica.

A estrutura de redes "mundo pequeno"emerge de uma topologia inicial regular,
onde as conexões possuem fortes correlações locais que são apenas parcialmente desfeitas
pelo processo de religação. Como resultado, a hipótese de independência condicional na
escolha dos vizinhos é violada. Portanto, os teoremas analíticos que garantem a precisão
dos estimadores em grafos aleatórios genéricos não são diretamente aplicáveis a esta classe
de redes, uma vez que as premissas matemáticas sobre as quais foram demonstrados não
se sustentam nesta topologia específica.

Essa limitação teórica torna a avaliação empírica indispensável. A presença de
alta coesão local pode introduzir vieses sistemáticos que não são capturados pelos mode-
los Erdős–Rényi ou Barabási–Albert. Assim, os experimentos com redes Watts-Strogatz
permitirão analisar a robustez dos estimadores MoR e RoS em cenários onde as garan-
tias teóricas formais estão ausentes, aproximando a análise de estruturas sociais reais
caracterizadas por transitividade elevada.
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3 MÉTODO DE PESQUISA

O objetivo central deste trabalho é conduzir uma avaliação empírica rigorosa e mul-
tifacetada da acurácia e da robustez dos estimadores MoR e RoS, pertencentes ao NSUM.
Para atingir este objetivo, foi desenvolvida uma metodologia de pesquisa fundamentada
em simulação computacional.

A escolha por simulação permite a criação de ambientes de teste controlados, nos
quais as propriedades estruturais da rede e os parâmetros do processo de amostragem
podem ser sistematicamente variados, possibilitando uma análise aprofundada do com-
portamento dos estimadores. Este capítulo detalha o arcabouço metodológico que sustenta
a pesquisa, descrevendo a estratégia de avaliação e as métricas utilizadas para quantificar
o desempenho.

A análise em redes sintéticas é estruturada em torno de três modelos generativos,
cada um selecionado para testar uma hipótese estrutural distinta. A investigação inicia-
se com o modelo de Erdős-Rényi, que estabelece uma linha de base com sua estrutura
puramente aleatória e homogênea.

Em seguida, o modelo de Barabási-Albert é utilizado para introduzir a heteroge-
neidade na distribuição de graus e a presença de hubs, características centrais de redes
scale-free. Por fim, o modelo de Watts-Strogatz permite a análise do efeito de alta clus-
terização local, uma propriedade definidora de redes de "mundo pequeno".

Este fluxo de trabalho completo, que abrange desde a configuração da rede até a
análise dos resultados, é executado de forma padronizada sobre cada uma das topologias
investigadas. A Tabela 1 descreve formalmente cada etapa deste processo, detalhando sua
função e o principal resultado gerado em cada passo.

Tabela 1 – Descrição formal das etapas de simulação e análise.

Passo Descrição da Etapa Resultado Principal
1 Configuração da Rede Grafo (𝐺) com topologia definida
2 Definição da Pop. Oculta Conjunto de vértices (𝐻) e 𝜌 real
3 Amostragem de Vértices Subconjunto de vértices (𝑆)
4 Coleta de Dados Relacionais Pares (𝑅𝑣, 𝐶𝑣) para cada 𝑣 ∈ 𝑆
5 Cálculo dos Estimadores Estimativas 𝜌MoR e 𝜌RoS
6 Avaliação de Desempenho Valores das métricas de erro
7 Agregação Estatística Média, desvio padrão e outras estatísticas

A fase inicial de configuração do cenário estabelece a verdade fundamental contra
a qual as estimativas serão comparadas. Esta fase compreende duas etapas críticas. A pri-
meira é a geração ou carregamento da estrutura da rede, que serve como o universo social
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da simulação. Esta etapa envolve a geração de um grafo a partir de um modelo generativo
específico, como Erdős-Rényi, utilizando um conjunto de parâmetros pré-definidos.

A segunda etapa é a definição da população oculta 𝐻 dentro desta rede. Um
subconjunto de vértices é selecionado para compor esta população, cuja prevalência real,
𝜌 = |𝐻|/|𝑉 |, é calculada e armazenada como o valor de referência.

Subsequentemente, a fase de execução da simulação emula o processo de pesquisa
de campo do NSUM. O processo inicia-se com a amostragem de um subconjunto de
vértices 𝑆 da população total 𝑉 , realizado através de uma seleção aleatória uniforme sem
reposição. Esta etapa simula a limitação prática de não poder inquirir toda a população.

Para cada vértice 𝑣 na amostra 𝑆, são coletadas as informações relacionais, o seu
número total de vizinhos de entrada, 𝑅𝑣, e o número de vizinhos de entrada que pertencem
à população oculta, 𝐶𝑣. Com base neste conjunto de dados agregados da amostra, são
então calculadas as estimativas da prevalência da população oculta, 𝜌MoR e 𝜌RoS, utilizando
as formulações matemáticas de cada estimador.

Por fim, ocorre a fase de avaliação. As estimativas 𝜌MoR e 𝜌RoS obtidas na fase
anterior são comparadas com a prevalência real 𝜌, que foi estabelecida na fase de confi-
guração. O resultado desta etapa é um conjunto de valores que quantificam a acurácia
de cada estimador para uma única execução do processo de amostragem. Para garantir a
significância estatística, o processo é repetido múltiplas vezes para cada configuração de
parâmetros, permitindo a agregação dos resultados e a análise do desempenho médio, da
variabilidade e de outras propriedades estatísticas dos estimadores.

3.1 Métricas de Avaliação

A seleção de um conjunto apropriado de métricas é de suma importância, pois são
estas que permitem traduzir os resultados brutos da simulação em conclusões significativas
sobre a acurácia, a confiabilidade e a robustez de cada método. Uma única métrica é, em
geral, insuficiente para capturar a complexidade do comportamento de um estimador.

Logo, foi adotada uma abordagem de avaliação empregando quatro métricas distin-
tas, cada uma projetada para iluminar uma faceta particular do desempenho, a magnitude
do erro, o risco de falha significativa, a presença de viés sistemático e a estabilidade geral
da estimação.

A métrica primária utilizada para quantificar a acurácia de uma única estimativa é
o erro relativo, aqui denotado por 𝐸𝑀 . Dada uma prevalência real da população oculta, 𝜌, e
uma prevalência estimada, 𝜌, a simples diferença aritmética entre elas não é uma medida
ideal, pois seu significado é dependente da escala de 𝜌. Para superar esta limitação, a
métrica de erro é definida como a razão entre o maior e o menor valor entre a estimativa
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e a realidade, conforme a equação:

𝐸𝑀 = max
(︃

𝜌

𝜌
,
𝜌

𝜌

)︃
(3.1)

Esta formulação apresenta propriedades desejáveis para a análise. Primeiramente,
a métrica é adimensional e normalizada, onde um valor de 𝐸𝑀 = 1.0 representa uma
estimativa perfeita, e valores superiores a 1.0 quantificam a magnitude do erro. Em se-
gundo lugar, ela trata superestimações e subestimações de forma simétrica; por exemplo,
uma estimativa que seja o dobro do valor real (𝜌 = 2𝜌) resulta no mesmo erro de uma
estimativa que seja a metade do valor real (𝜌 = 0.5𝜌), sendo 𝐸𝑀 = 2.0 em ambos os casos.

Nos experimentos, o erro médio, calculado como a média aritmética dos valores de
𝐸𝑀 sobre múltiplas execuções, será utilizado como o indicador principal do desempenho
esperado de um estimador.

Embora o erro médio seja um indicador útil da tendência central do desempenho,
ele pode mascarar a frequência de erros de grande magnitude. Um estimador pode ter
um erro médio baixo, mas ainda assim produzir, com uma frequência não desprezível,
estimativas severamente imprecisas.

Para capturar esta dimensão de risco e confiabilidade, foi definida a métrica de
probabilidade de erro elevado. Esta métrica quantifica a probabilidade de que a métrica
de erro 𝐸𝑀 exceda um limiar de tolerância pré-definido, 1 + 𝜖. Formalmente, a métrica é:

𝑃 [𝐸𝑀 > 1 + 𝜖] (3.2)

Neste trabalho, será utilizado um valor de 𝜖 = 0.05, que corresponde a um limiar de
erro de 5%. A métrica, portanto, responde a uma questão de grande relevância prática:
"Qual é a probabilidade de que uma única aplicação do estimador resulte em um erro
superior a 5%?". Um valor baixo para esta métrica indica um estimador mais confiável
e previsível, cujos resultados raramente se desviam de forma substancial do valor real,
sendo um critério de avaliação de robustez mais rigoroso que o erro médio isoladamente.

Ademais, o viés, ou bias, de um estimador quantifica a sua tendência sistemática
de produzir estimativas que são, em média, diferentes do valor verdadeiro do parâmetro.
Enquanto a métrica 𝐸𝑀 foca na magnitude do erro, o viés foca na sua direção. Ele é
formalmente definido como o valor esperado da diferença entre a estimativa e o valor real:

Bias = 𝐸[𝜌 − 𝜌] (3.3)

Em um contexto de simulação, o viés é aproximado pela média aritmética desta
diferença sobre um grande número de execuções. Um viés positivo indica uma tendência
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sistemática à superestimação, enquanto um viés negativo indica uma tendência à subes-
timação. Um estimador ideal é não-enviesado, apresentando um viés próximo de zero.

A análise do viés é particularmente importante neste trabalho, pois certas topolo-
gias de rede, como as scale-free com seus hubs de alto grau, podem introduzir distorções
sistemáticas que afetam os estimadores de forma distinta. Esta métrica, portanto, atua
como uma ferramenta de diagnóstico para identificar falhas estruturais na lógica de um
estimador quando confrontado com estruturas de rede específicas.

Para obter uma compreensão completa e granular do comportamento do erro, para
além de medidas de resumo como a média ou a probabilidade, é fundamental analisar a
sua distribuição estatística completa. A metodologia empregada para esta análise é a
visualização da distribuição da métrica de erro 𝐸𝑀 através de diagramas de caixa, ou
boxplots.

O boxplot revela simultaneamente múltiplas propriedades da distribuição. A linha
central representa a mediana, uma medida de tendência central mais robusta a valores
extremos do que a média. A altura da caixa, que representa o intervalo interquartil, quan-
tifica a dispersão dos 50% centrais dos dados, servindo como um indicador da consistência
do estimador, caixas mais curtas implicam em maior consistência.

Além disso, o diagrama identifica explicitamente os valores atípicos ou outliers,
que são os pontos de dados que se situam muito além do corpo principal da distribuição.
A frequência e a magnitude destes outliers são um indicador direto da instabilidade de
um estimador.

Um método que gera um número elevado de outliers com erros de grande magni-
tude é considerado menos robusto, mesmo que sua mediana ou média de erro seja baixa.
Esta análise visual, portanto, complementa as métricas quantitativas, fornecendo um di-
agnóstico qualitativo profundo sobre a confiabilidade geral de cada método.
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4 EXPERIMENTOS

Todos os experimentos foram implementados utilizando a linguagem de programa-
ção Python, versão 3.12.4. A execução foi suportada por um ecossistema de bibliotecas de
código aberto amplamente estabelecidas. A biblioteca NetworkX foi a ferramenta central
para a criação, manipulação e armazenamento das estruturas de grafo. Para as opera-
ções numéricas, geração de números aleatórios e processos de amostragem, utilizou-se a
biblioteca NumPy.

A organização, agregação e exportação dos dados brutos gerados pelas simulações
foram gerenciadas pela biblioteca Pandas, que permitiu a estruturação dos resultados em
formato tabular CSV para análise subsequente. A visualização dos resultados foi realizada
com as bibliotecas Matplotlib e Seaborn.

Para garantir a total reprodutibilidade dos resultados, uma semente pseudoaleató-
ria fixa foi definida no início de cada execução do script de simulação. Isso assegura que a
sequência de números aleatórios utilizada na geração dos grafos, na seleção da população
oculta e na amostragem dos vértices seja a mesma em diferentes execuções, permitindo
que os resultados possam ser replicados de forma idêntica.

Adicionalmente, foi implementado um sistema de cache para os grafos sintéticos.
Uma vez que a geração de redes de grande escala é um processo computacionalmente
intensivo, cada grafo gerado foi salvo em disco. Em execuções subsequentes, o sistema
verifica a existência do grafo em cache e o carrega diretamente, otimizando o tempo de
execução sem comprometer a integridade do experimento.

O procedimento de execução para todos os experimentos com redes sintéticas se-
guiu um fluxo padronizado para garantir a consistência. Para cada combinação de parâme-
tros específica de um experimento, foram geradas 50 instâncias de grafos independentes.
Dentro de cada uma dessas instâncias, uma única população oculta foi selecionada ale-
atoriamente. Subsequentemente, o processo de amostragem foi executado, e para cada
tamanho de amostra |𝑆| definido, foram extraídas 20 amostras distintas de vértices.

Esta estrutura aninhada, com 50 repetições no nível do grafo e 20 no nível da
amostragem, totalizando 1.000 execuções para cada ponto de dados, foi projetada para
garantir que os resultados agregados sejam estatisticamente robustos e que o desempenho
médio não seja influenciado por artefatos de uma única configuração aleatória. Em cada
execução, as estimativas 𝜌MoR e 𝜌RoS foram calculadas e armazenadas para a análise
posterior.
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4.1 Redes de Erdős-Rényi

O objetivo desta análise é estabelecer o desempenho dos estimadores em uma topo-
logia puramente estocástica, que serve como uma referência fundamental. Neste modelo,
cada possível aresta direcionada entre dois vértices é formada com uma probabilidade 𝑝

independente, resultando em uma rede com estrutura homogênea e desprovida de padrões
complexos.

A configuração paramétrica para este experimento foi definida para permitir a
avaliação de múltiplos fatores, como a escalabilidade em relação ao tamanho da rede e o
impacto do esforço de amostragem. Os parâmetros específicos utilizados estão detalhados
na Tabela 2. A escolha de dois tamanhos de rede 𝑛, 100.000 e 1.000.000 de vértices, visa
observar se o desempenho dos estimadores se mantém consistente em diferentes ordens de
magnitude.

O grau médio esperado foi fixado em 30, um valor que gera redes esparsas, porém
conectadas, análogo ao observado em muitas redes sociais de grande escala. A prevalência
da população oculta 𝜌 foi definida em 5%, um valor representativo de muitos cenários de
populações minoritárias ou de difícil acesso.

A variação do tamanho da amostra |𝑆|, de 100 a 10.000, foi definida para reproduzir
o delineamento experimental adotado pelos autores no artigo de referência [4]. Esta escolha
permite mapear a curva de convergência dos estimadores à medida que mais informação
é coletada da rede, possibilitando uma comparação direta com os resultados originais.
Estes valores foram selecionados para cobrir um espectro que vai de uma amostragem
muito esparsa até uma amostragem mais substancial, refletindo um intervalo de esforços
práticos em pesquisas de campo.

Tabela 2 – Parâmetros para os experimentos com redes de Erdős-Rényi.

Parâmetro Valor(es)
Número de Vértices (𝑛) 100.000, 1.000.000
Grau Médio Esperado 30
Prevalência da Pop. Oculta (𝜌) 0.05 (5%)
Tamanhos de Amostra (|𝑆|) 100, 500, 1.000, 5.000, 10.000
Número de Instâncias de Grafo 50
Amostras por Instância 20

A execução deste experimento seguiu o procedimento padrão detalhado no início
deste capítulo. A aplicação desta metodologia para cada combinação de parâmetros espe-
cificada na Tabela 2 resultou na geração de um conjunto de dados abrangente. Estes dados
formam a base para a análise de desempenho dos estimadores em redes homogêneas, cujos
resultados quantitativos são apresentados no capítulo subsequente de resultados.
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4.2 Redes de Barabási-Albert

O objetivo deste experimento é avaliar a robustez dos estimadores MoR e RoS em
redes scale-free, cuja estrutura é caracterizada por uma distribuição de grau que segue
uma lei de potência. Este tipo de rede, gerado pelo mecanismo de conexão preferencial,
resulta na emergência de um pequeno número de vértices com um grau muito elevado, os
chamados hubs, enquanto a maioria dos vértices possui poucas conexões.

Esta topologia é amplamente reconhecida como um modelo mais fiel para muitas
redes sociais, tecnológicas e biológicas do mundo real, tornando este experimento um passo
crucial para avaliar a aplicabilidade prática dos estimadores.

Uma consideração metodológica importante neste experimento diz respeito à na-
tureza do grafo gerado. O modelo canônico de Barabási-Albert, conforme implementado
na biblioteca NetworkX, produz um grafo não direcionado. Contudo, a formulação dos
estimadores, conforme detalhado no capítulo de Metodologia, baseia-se no conceito de
vizinhança de entrada in-neighbors, uma propriedade inerente a grafos direcionados. Para
compatibilizar o modelo topológico com os requisitos dos estimadores, uma modelagem
de grafo direcionado simétrico foi adotada.

É importante destacar que, embora o trabalho utilizado como referência apresente
resultados para redes do tipo scale-free, os autores não especificam o algoritmo gerador
utilizado. Neste trabalho, adotou-se explicitamente o modelo de Barabási-Albert, ampla-
mente reconhecido na literatura para a geração de redes com distribuição de grau em lei de
potência. Ao definir inequivocamente o modelo gerador, este experimento contribui para
a transparência e facilita a reprodutibilidade dos resultados para esta classe de topologia.

A partir do grafo não direcionado gerado, foi criado um grafo direcionado onde
cada aresta não direcionada {𝑢, 𝑣} foi convertida em um par de arestas direcionadas, (𝑢, 𝑣)
e (𝑣, 𝑢). Sob esta modelagem, o grau de entrada de qualquer vértice 𝑣 no grafo direcionado
é precisamente igual ao seu grau total no grafo não direcionado original, representando
de forma fiel a noção de conexões em uma rede social intrinsecamente recíproca.

Os parâmetros para esta série de experimentos, detalhados na Tabela 3, foram
selecionados para investigar a interação entre a topologia scale-free e outras variáveis.
A variação do número de vértices 𝑛 mantém o objetivo de analisar a escalabilidade. O
parâmetro 𝑚, fixado em 30, define o número de arestas que cada novo vértice forma
durante o processo de crescimento da rede.

Diferentemente do experimento anterior, a prevalência da população oculta 𝜌 foi
variada em três níveis distintos. Esta variação é fundamental para investigar se a presença
de hubs impacta de forma diferente a estimação de populações raras versus populações
mais comuns, uma questão central para a aplicabilidade dos estimadores.
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Os tamanhos de amostra |𝑆| e a prevalência 𝜌 seguiram a mesma metodologia
de variação aplicada ao experimento anterior e ao trabalho base. Esta manutenção dos
parâmetros de amostragem é fundamental para isolar o efeito da mudança de topologia
no desempenho dos estimadores, em busca de manter a consistência comparativa entre os
cenários.

Tabela 3 – Parâmetros para os experimentos com redes de Barabási-Albert.

Parâmetro Valor(es)
Número de Vértices (𝑛) 25.000, 250.000
Parâmetro de Conexão (𝑚) 30
Prevalência da Pop. Oculta (𝜌) 0.10, 0.20, 0.30
Tamanhos de Amostra (|𝑆|) 100, 500, 1.000, 5.000, 10.000
Número de Instâncias de Grafo 50
Amostras por Instância 20

O fluxo de execução para este experimento também seguiu o procedimento padrão
descrito no início deste capítulo, utilizando os parâmetros definidos na Tabela 3. A ava-
liação do impacto desta estrutura heterogênea sobre o desempenho dos estimadores será
detalhada no capítulo de resultados.

4.3 Redes de Watts–Strogatz

Este conjunto de experimentos investiga o desempenho dos estimadores NSUM
em topologias com a propriedade de "mundo pequeno". As redes de Watts-Strogatz são
caracterizadas por possuírem, simultaneamente, um caminho médio curto entre quaisquer
dois vértices e um alto coeficiente de clusterização.

Esta última propriedade, em particular, modela a tendência observada em muitas
redes sociais onde os amigos de uma pessoa também tendem a ser amigos entre si, for-
mando comunidades locais coesas. O objetivo deste experimento é, portanto, avaliar se a
alta redundância de conexões em vizinhanças locais impacta a eficiência dos estimadores
em coletar informações sobre a população oculta.

Assim como no modelo de Barabási-Albert, a implementação canônica do modelo
de Watts-Strogatz gera um grafo não direcionado. Para manter a consistência metodoló-
gica com os experimentos anteriores e atender aos requisitos de formulação dos estimado-
res, foi adotada a mesma abordagem de modelagem.

Cada grafo não direcionado gerado foi convertido em um grafo direcionado simé-
trico, onde a vizinhança de entrada de um vértice corresponde ao conjunto completo de
seus vizinhos na estrutura original.

Os parâmetros para este experimento, descritos na Tabela 4, foram definidos para
explorar as características únicas do modelo. O parâmetro 𝑘 determina o grau médio
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inicial de cada vértice, fixado em 60 para manter uma densidade de rede comparável à
dos experimentos anteriores. O parâmetro que determina a probabilidade de religação 𝑝,
foi variado em dois níveis.

Um valor baixo 𝑝 = 0.01 gera redes com uma estrutura altamente ordenada e
clusterizada, próxima de um anel regular. Um valor mais alto 𝑝 = 0.1 introduz maior
aleatoriedade na rede, diminuindo a clusterização local, mas preservando a propriedade
de "mundo pequeno".

Esta variação permite investigar se o desempenho do estimador é sensível ao nível
de ordem versus aleatoriedade na estrutura da rede. Os demais parâmetros, como o tama-
nho da rede 𝑛, a prevalência da população oculta 𝜌 e os tamanhos de amostra |𝑆|, foram
mantidos consistentes com os experimentos anteriores para facilitar a análise comparativa.

Tabela 4 – Parâmetros para os experimentos com redes de Watts-Strogatz.

Parâmetro Valor(es)
Número de Vértices (𝑛) 25.000, 250.000
Grau Médio (𝑘) 60
Prob. de Religação (𝑝) 0.01, 0.1
Prevalência da Pop. Oculta (𝜌) 0.10, 0.20, 0.30
Tamanhos de Amostra (|𝑆|) 100, 500, 1.000, 5.000, 10.000
Número de Instâncias de Grafo 50
Amostras por Instância 20

A execução deste experimento seguiu o procedimento padrão detalhado no início
deste capítulo, utilizando os parâmetros definidos na Tabela 4. A análise quantitativa dos
dados gerados será apresentada no capítulo de resultados.
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5 RESULTADOS

5.1 Rede Erdős-Rényi

A principal conclusão extraída desta seção é que, no contexto de uma rede aleató-
ria, os estimadores MoR e RoS apresentam desempenho virtualmente idêntico em todas
as métricas avaliadas. A avaliação de desempenho foi realizada por meio do erro médio
𝐸𝑀 , onde um valor de 1.0 indica uma estimativa perfeita. A Figura 1 exibe o erro médio
para os estimadores.

Figura 1 – Erro médio dos estimadores MoR e RoS em função do tamanho da amostra
para redes Erdős-Rényi.

Consistentemente, o erro médio decresce à medida que o tamanho da amostra
aumenta, um comportamento esperado que demonstra a convergência dos estimadores.
Notavelmente, a performance dos estimadores MoR e RoS é quase idêntica em todas
as condições testadas. O relatório sumário indica, por exemplo, que para n=1.000.000 e
|S|=1.000, o erro médio do MoR foi de 1.020257, enquanto o do RoS foi de 1.020096, uma
diferença estatisticamente insignificante.
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Para uma análise mais aprofundada da estabilidade, a Figura 2 apresenta a distri-
buição completa do erro através de boxplots.

Figura 2 – Distribuição do erro dos estimadores MoR e RoS para redes Erdős-Rényi,
mostrando mediana, quartis e outliers.

As distribuições de erro para MoR e RoS são visualmente indistinguíveis. Ambos
apresentam mediana próxima de 1.0 e uma redução na dispersão e no número de outliers
com o aumento do tamanho da amostra. A análise conjunta do erro médio e de sua
distribuição demonstra que não há vantagem prática na escolha de um estimador sobre o
outro em termos de acurácia ou consistência no contexto de redes Erdős-Rényi.

A análise de risco quantifica a probabilidade de se obter uma estimativa com um
erro superior a um limiar de 5%, representada por P[E > 1.05]. A Figura 3 ilustra este
perfil de risco.

O risco de uma estimativa significativamente incorreta é elevado para amostras
pequenas, acima de 50% para |S|=100, mas decresce drasticamente, aproximando-se de
zero para amostras com 5.000 ou mais nós. Assim como nas métricas anteriores, os perfis de
risco para MoR e RoS são idênticos. A escolha do estimador não altera a confiabilidade do
resultado, apenas o aumento do tamanho da amostra é uma estratégia eficaz para mitigar
o risco.

Desta forma, demonstra-se que, para uma rede de topologia aleatória, ambos os
estimadores são não viesados, apresentam perfis de erro e risco idênticos, e sua performance
é ditada primariamente pelo tamanho da amostra.
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Figura 3 – Probabilidade de o erro do estimador exceder 5% em função do tamanho da
amostra para redes Erdős-Rényi.

5.2 Rede Barabási-Albert

A hipótese central para esta seção é que tal heterogeneidade estrutural irá expor
diferenças de desempenho entre os estimadores MoR e RoS. Os resultados a seguir indicam
que, embora algumas métricas não revelem uma divergência drástica, a análise de risco
demonstra uma vantagem quantificável e consistente do estimador RoS.

A presença de hubs é teoricamente uma fonte de viés para o estimador MoR, que
trata a informação de cada nó amostrado com peso igual, podendo sub-representar a
contribuição dos hubs. A Figura 4 apresenta a análise de viés para os estimadores no
modelo Barabási-Albert.

Contrariamente à forte expectativa teórica de um viés negativo para o MoR, os
resultados da simulação não demonstram um viés sistemático e significativo para nenhum
dos estimadores. Conforme a Figura 4 e o relatório sumário, os valores de viés médio para
ambos os estimadores são da ordem de 10−4 e flutuam entre valores positivos e negativos
dependendo dos parâmetros de prevalência (𝜌) e tamanho da rede (𝑛).

Para 𝑛 = 25.000 e 𝜌 = 0.10, o MoR apresenta um pequeno viés positivo, enquanto
para 𝜌 = 0.20, o viés é negativo. Este comportamento sugere que, para os parâmetros de
geração de rede utilizados nesta simulação, o efeito estrutural que induz o viés pode não
ser suficientemente pronunciado para se manifestar de forma clara e consistente.

A avaliação do erro médio, apresentada na Figura 5, revela uma pequena, porém
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Figura 4 – Análise de viés dos estimadores MoR e RoS para redes Barabási-Albert. A
figura é organizada por tamanho de rede (colunas) e tipo de estimador (linhas).

consistente, vantagem do estimador RoS.

Em todos os cenários, as curvas do estimador RoS se posicionam ligeiramente
abaixo das curvas do estimador MoR. Para 𝑛 = 250.000, 𝜌 = 0.10 e |𝑆| = 500, o erro
médio do MoR é de 1.016849, enquanto o do RoS é de 1.014876. Embora a diferença seja
modesta, sua consistência em múltiplas condições indica uma superioridade marginal do
RoS em termos de acurácia média.

A métrica que revela a diferença mais significativa entre os estimadores é a pro-
babilidade de erro superior a 5%, conforme ilustrado na Figura 6.

Nesta análise, o estimador RoS demonstra uma vantagem clara e consistente sobre
o MoR. Para qualquer condição de 𝑛 e 𝜌, a curva de risco do RoS está posicionada abaixo
da curva do MoR, especialmente para tamanhos de amostra menores. Esta diferença
quantifica o RoS como uma escolha mais confiável, oferecendo uma menor probabilidade
de produzir uma estimativa com erro significativo.

Diferentemente dos resultados para a rede Erdős-Rényi, a topologia scale-free do
modelo Barabási-Albert foi suficiente para revelar uma diferença de desempenho entre
os estimadores. A análise de risco demonstrou a superioridade do estimador RoS. A sua
capacidade de ponderar a informação pela conectividade dos nós, mesmo que o efeito
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Figura 5 – Erro médio dos estimadores MoR e RoS em função do tamanho da amostra
para redes Barabási-Albert, facetado pelo tipo de estimador (linhas) e tamanho
da rede (colunas).

sobre o erro médio seja modesto, resulta em um estimador mais confiável e com menor
probabilidade de falha.

Estes resultados empíricos, que apontam para uma maior confiabilidade do esti-
mador RoS em redes scale-free, corroboram a análise teórica desenvolvida no artigo de
referência [4]. O trabalho original estabelece limitantes de erro analíticos que são especí-
ficos para diferentes topologias de rede, reconhecendo que a estrutura da rede subjacente
impacta diretamente o desempenho dos estimadores.

Especificamente para redes scale-free, o artigo deriva um limitante superior de
erro aprimorado para o estimador RoS, que é mais apertado do que os limitantes mais
genéricos aplicáveis a redes aleatórias em geral. A existência de um teorema dedicado a
este caso sinaliza que a estrutura de conectividade heterogênea, com a presença de hubs,
permite uma análise teórica mais refinada para o RoS. Esta vantagem teórica encontra
sua contraparte empírica em nossos resultados de simulação.

Embora as diferenças no erro médio e no viés não tenham se mostrado proe-
minentes, a métrica mais diretamente relacionada a um limitante superior de erro é a
probabilidade de o erro exceder um determinado limiar. A superioridade clara do RoS
na análise de risco, documentada na Figura 6, é, portanto, a manifestação prática mais
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Figura 6 – Probabilidade de o erro do estimador exceder 5% em função do tamanho da
amostra para redes Barabási-Albert.

direta da vantagem teórica formalizada pelo artigo de referência. A convergência entre o
limitante teórico mais restrito e a menor probabilidade de erro observada na prática con-
fere um suporte robusto à conclusão de que o estimador RoS é, de fato, mais adequado
para a análise de redes com distribuição de grau do tipo scale-free.

5.3 Rede Watts-Strogatz

Este modelo é particularmente interessante por interpolar entre uma rede regular
tipo anel com alto coeficiente de agrupamento e uma rede aleatória, através do parâmetro
de probabilidade de religação 𝑝. Foram testados cenários com baixo valor de 𝑝 = 0.01, que
preserva a estrutura local e o alto agrupamento, e outro com um valor maior de 𝑝 = 0.1,
que torna a rede mais próxima de uma topologia aleatória.

Avaliar a performance dos estimadores neste modelo apresenta alguns desafios, pois
a análise teórica do artigo base [4] pode não se aplicar diretamente a grafos gerados por
este processo. A teoria de erro proposta naquele trabalho parte da definição de random
networks, na qual os vizinhos de cada nó são selecionados de forma uniforme e aleatória
do restante da rede.

O modelo Watts-Strogatz, contudo, viola esta premissa, tendo em vista que sua
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geração parte de uma estrutura de rede altamente regular, um anel, e aplica um processo
de religação local. Este método preserva um alto coeficiente de agrupamento, uma ca-
racterística de “mundo pequeno” que não emerge de um processo de seleção de vizinhos
puramente aleatório e uniforme.

Portanto, esta seção investiga empiricamente o comportamento dos estimadores
MoR e RoS em um cenário que se desvia das suposições teóricas. A principal característica
estrutural das redes Watts-Strogatz que se mantém é a sua distribuição de grau regular
e homogênea, similar à de um grafo aleatório e distinta da heterogeneidade do modelo
Barabási-Albert.

A hipótese para esta seção, então, é que, mesmo com o processo de seleção de
vizinhos não-uniforme, a forma da distribuição de graus continua sendo o fator dominante
na determinação do viés dos estimadores. Espera-se que, devido à ausência de hubs, o
desempenho dos estimadores MoR e RoS seja similar, assim como observado no modelo
Erdős-Rényi.

A Figura 7 apresenta a análise de viés para os estimadores no modelo Watts-
Strogatz, organizada pelos parâmetros de tamanho da rede 𝑛 e probabilidade de religação
𝑝.

Figura 7 – Análise de viés dos estimadores MoR (linhas contínuas) e RoS (linhas traceja-
das) para redes Watts-Strogatz.
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Em conformidade com o comportamento observado no modelo Erdős-Rényi, ambos
os estimadores se mostram não viesados no modelo Watts-Strogatz. Em todos os quatro
subplots, que cobrem as variações de 𝑛 e 𝑝, as linhas de viés para MoR e RoS flutuam em
torno da linha de referência 𝑦 = 0. Este resultado, embora não constitua uma validação
direta da teoria do artigo de base devido às diferenças no processo de geração do grafo, é
o desfecho esperado.

A ausência de viés sistemático reforça a hipótese de que a principal causa do viés
do estimador MoR é a heterogeneidade da distribuição de graus, ou seja, a presença de
hubs, e não outras propriedades estruturais como o alto coeficiente de agrupamento. Uma
vez que o modelo Watts-Strogatz possui uma distribuição de grau homogênea, era de se
esperar que os estimadores tivessem um desempenho similar e não viesado, o que os dados
confirmam.

As demais métricas de avaliação, erro médio, distribuição do erro e probabilidade
de erro significativo, apresentam um comportamento uníssono e conclusivo. A Figura 8 é
representativas de todos os resultados.

Figura 8 – Erro médio dos estimadores MoR e RoS em função do tamanho da amostra
para redes Watts-Strogatz.

As linhas e distribuições para os estimadores MoR e RoS são praticamente indis-
tinguíveis. Os valores de erro, desvio padrão e probabilidade são idênticos até a quarta
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ou quinta casa decimal na maioria dos casos. Por exemplo, para 𝑛 = 250.000, 𝑝 = 0.01,
𝜌 = 0.10 e |𝑆| = 500, o erro médio do MoR é de 1.013611, e o do RoS é de 1.013609. A
probabilidade de erro significativo para a mesma condição é de 0.009000 para ambos.

Assim, conclui-se que a performance dos estimadores MoR e RoS é idêntica em re-
des com distribuição de grau regular, independentemente de a rede possuir uma estrutura
local com alto coeficiente de agrupamento 𝑝 = 0.01 ou ser mais aleatória 𝑝 = 0.1. Isso
demonstra que a propriedade estrutural que diferencia o desempenho dos estimadores não
é o agrupamento local representado pela característica de "mundo pequeno", mas sim a
heterogeneidade da distribuição de conectividade.
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6 CONCLUSÃO

Este trabalho propôs-se a investigar uma questão central para a aplicação do
NSUM, a influência da topologia da rede no desempenho e na confiabilidade de seus
dois principais estimadores, o MoR e o RoS sob diferentes topologias de grafos aleatórios
por meio de simulações computacionais medindo o erro estimativo em cada cenário.

Para responder a esta questão, foi conduzida uma análise empírica multifacetada
em três modelos de rede distintos. Os resultados obtidos nos modelos de Erdős-Rényi e
Watts-Strogatz estabeleceram uma linha de base fundamental. Em ambas as topologias,
caracterizadas por uma distribuição de grau homogênea, o desempenho dos estimadores
MoR e RoS mostrou-se virtualmente idêntico em todas as métricas de avaliação, erro
médio, viés, distribuição do erro e risco de falha.

Esta equivalência em redes aleatórias e de mundo pequeno demonstrou que pro-
priedades como a clusterização local não são o fator determinante que diferencia os esti-
madores. A divergência de desempenho, portanto, deveria emergir em uma topologia com
características estruturais distintas.

A análise no modelo de Barabási-Albert, que gera redes do tipo scale-free, reve-
lou esta diferenciação. Embora a diferença no erro médio tenha sido modesta e um viés
sistemático forte não tenha sido consistentemente observado nos parâmetros testados, a
análise de risco validou o resultado teórico do estimador RoS. Neste cenário específico, o
RoS apresentou uma probabilidade consistentemente menor de produzir estimativas com
erro significativo, especialmente com amostras de menor tamanho.

Os resultados, em conjunto, permitem levantar um hipótese ao problema inicial.
A superioridade de um estimador sobre o outro não é absoluta, mas sim dependente da
estrutura da rede. A propriedade que se mostrou crucial foi a heterogeneidade da distribu-
ição de grau. A presença de hubs, característica central das redes scale-free, é o fator que
torna o estimador RoS tecnicamente superior em alguns cenários, não necessariamente
por uma acurácia média drasticamente maior, mas por sua maior confiabilidade e menor
risco.

Como limitação, nota-se que o viés teoricamente esperado para o MoR no modelo
Barabási-Albert não se manifestou de forma proeminente, o que pode ser atribuído aos
parâmetros de geração de rede específicos utilizados. Trabalhos futuros poderiam explorar
uma gama mais ampla destes parâmetros para investigar as condições em que este viés se
torna mais acentuado.

Adicionalmente, futuras investigações poderiam estender esta análise para outros
modelos de rede, como os baseados em blocos estocásticos, e incluir a avaliação de estra-
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tégias de amostragem mais complexas, comparando seus efeitos sobre o desempenho dos
estimadores.
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