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RESUMO

A Computação de Borda (Edge Computing) é um paradigma em ascensão para aplica-
ções de Internet das Coisas (Internet of Things - IoT), permitindo o processamento de
dados próximo à sua origem, como em sistemas de Reconhecimento de Placas Veiculares
(License Plate Recognition - LPR). Contudo, essa arquitetura introduz novos desafios de
segurança, especificamente no fluxo de dados entre o dispositivo de borda e o servidor
central. Este trabalho apresenta uma pesquisa aplicada e experimental focada na segu-
rança deste fluxo. O objetivo principal foi demonstrar a vulnerabilidade de dados sensíveis
(placas de veículos) transmitidos em texto puro (plain text) e, em seguida, implementar e
validar uma contramedida de segurança robusta. A metodologia envolveu a construção de
um protótipo com um Raspberry Pi (borda) e um servidor (backend). Foi executado um
ataque Man-in-the-Middle (MitM) utilizando ARP spoofing (Address Resolution Protocol
spoofing), que comprovou a interceptação e visualização dos dados em texto puro. Como
solução, foi implementado um esquema de criptografia híbrida, combinando o Advanced
Encryption Standard (AES) para a cifragem dos dados e o algoritmo Rivest-Shamir-
Adleman (RSA) para a troca segura de chaves. A repetição do ataque MitM no sistema
protegido validou a eficácia da solução, garantindo a confidencialidade e a integridade dos
dados, que se mostraram indecifráveis ao atacante. Adicionalmente, foi demonstrada uma
vulnerabilidade de disponibilidade por meio de um ataque de Negação de Serviço (Denial
of Service - DoS), que conseguiu saturar os recursos do dispositivo de borda. Conclui-se
que a criptografia híbrida é uma solução eficaz para a proteção de dados em trânsito,
mas que a segurança em dispositivos de borda requer uma abordagem multifacetada,
considerando também a disponibilidade.

Palavras-chave: Computação de Borda, Segurança da Informação, Internet das Coisas
(IoT), Criptografia Híbrida, Man-in-the-Middle (MitM).
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ABSTRACT

Edge Computing is an emerging paradigm for Internet of Things (IoT) applications,
enabling data processing close to its source, such as License Plate Recognition (LPR) sys-
tems. However, this architecture introduces new security challenges, particularly in the
data flow between the edge device and the central server. This work presents an applied
and experimental study focused on the security of this data flow. The main objective was
to demonstrate the vulnerability of sensitive data (vehicle license plates) transmitted in
plain text and, subsequently, to implement and validate a robust security countermeasure.
The methodology involved the development of a prototype using a Raspberry Pi (edge)
and a server (backend). A Man-in-the-Middle (MitM) attack using Address Resolution
Protocol (ARP) spoofing was executed, confirming the ability to intercept and read the
plain-text data. As a solution, a hybrid cryptography scheme was implemented, combining
Advanced Encryption Standard (AES) for data encryption and Rivest–Shamir–Adleman
(RSA) algorithm for secure key exchange. Repeating the MitM attack on the secured sys-
tem validated the solution’s effectiveness, ensuring data confidentiality and integrity, as
the data remained indecipherable to the attacker. Furthermore, an availability vulnerabil-
ity was demonstrated via a Denial of Service (DoS) attack, which successfully saturated
the edge device’s resources. The results indicate that hybrid cryptography is an effec-
tive solution for protecting data-in-transit, but that security in edge devices requires a
multifaceted approach that also addresses device availability.

Keywords: Edge Computing. Information Security. Internet of Things (IoT). Hybrid
Cryptography. Man-in-the-Middle (MitM).
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1 INTRODUÇÃO

A tecnologia avança de forma acelerada, impulsionando a automação nos mais
diversos setores. O controle de acesso veicular é uma das áreas que mais têm se beneficiado
dessas inovações [1]. Com a crescente demanda por soluções inteligentes e eficientes em
ambientes como condomínios, empresas e shoppings, a automação desse processo tornou-
se não apenas um meio de aumentar a agilidade, mas uma necessidade para garantir a
segurança e a integridade dos dados envolvidos.

Diante desse cenário, a Computação de Borda (Edge Computing) surge como uma
solução eficiente. A sua principal vantagem reside no pré-processamento de informações
sensíveis próximo à fonte dos dados, antes do envio para a nuvem, o que minimiza riscos e
reduz significativamente a latência [2]. Estudos estimam que uma parcela expressiva dos
dados criados será processada fora dos data centers centralizados [3], isto é, nas bordas
da rede, oferecendo respostas mais rápidas e maior controle. No entanto, ao passo que
soluciona questões de desempenho, a arquitetura distribuída da Computação de Borda
introduz vetores de risco específicos que exigem estratégias de Segurança da Informação
adaptadas a este contexto [4].

Com o aumento dos ciberataques que exploram vulnerabilidades em dispositivos
de borda e meios de comunicação, a segurança torna-se um tema central. A tríade da
segurança da informação — Confidencialidade, Integridade e Disponibilidade (CIA) — é
o modelo fundamental para proteger dados em sistemas computacionais [5]. Isso é especi-
almente crítico ao lidar com dados sensíveis, como registros de entrada e saída e imagens
capturadas por sistemas de monitoramento.

Nesse contexto, tecnologias como câmeras IP e sistemas de reconhecimento de
placas (LPR - License Plate Recognition) [6] geram um grande volume de dados em
tempo real. A abordagem tradicional, que depende do envio integral dessas informações
para a nuvem, enfrenta problemas como congestionamento de rede e atrasos na tomada
de decisão. Por outro lado, a Computação de Borda, embora resolva a latência, expande
a superfície de ataque. Dispositivos de borda, frequentemente localizados em ambientes
fisicamente acessíveis, tornam-se alvos de interceptações e manipulações, comprometendo
a operação de sistemas críticos e a privacidade dos dados.

A discussão central que impulsiona este projeto é a necessidade de conciliar os be-
nefícios operacionais da Computação de Borda com os requisitos rigorosos de segurança.
O argumento principal é que a simples migração do processamento para a borda é in-
suficiente; é essencial que essa migração seja acompanhada pela implementação de uma
arquitetura de segurança específica para este modelo híbrido (borda-nuvem) [7].
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O problema central abordado neste trabalho é a vulnerabilidade do fluxo de dados
entre dispositivos de borda e servidores centrais, especialmente quando trafegam por redes
locais suscetíveis a interceptações. Essa questão torna-se crítica no caso de uso adotado por
esta pesquisa: um sistema de controle de acesso veicular, onde a ausência de mecanismos
de segurança robustos no trânsito das informações (placas de veículos) pode comprometer
a confidencialidade e a integridade de todo o sistema.

Este trabalho defende que, por meio da aplicação de técnicas de criptografia no
fluxo de dados, é possível mitigar significativamente os riscos associados, construindo um
sistema confiável e resiliente, capaz de preservar a autenticidade dos dados veiculares
mesmo sob ameaça de interceptação de tráfego.

1.1 Objetivos

As próximas seções descrevem os objetivos gerais e específicos desse trabalho.

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é avaliar experimentalmente a segurança do fluxo de
dados em um sistema de Computação de Borda, demonstrando vulnerabilidades práticas
e validando a eficácia de uma solução de criptografia híbrida para mitigação de riscos.

1.1.2 Objetivos Específicos

Para alcançar o objetivo geral, foram definidos os seguintes objetivos específicos:

• Construir um protótipo funcional de controle de acesso veicular utilizando hardware
de baixo custo (Raspberry Pi) como dispositivo de borda;

• Analisar a vulnerabilidade da comunicação em um cenário inseguro (HTTP em texto
puro) por meio de interceptação passiva;

• Implementar uma camada de criptografia híbrida (AES e RSA) para garantir a
confidencialidade e integridade dos dados em trânsito;

• Avaliar a resiliência do dispositivo de borda quanto à disponibilidade, submetendo-o
a ataques de Negação de Serviço (DoS).

1.2 Organização do Trabalho

O restante deste trabalho está organizado da seguinte forma: O Capítulo 2 apre-
senta a Fundamentação Teórica, abordando os conceitos de Computação em Nuvem,
Borda, Visão Computacional e Segurança. O Capítulo 3 detalha o Método de Pesquisa e
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a arquitetura proposta. O Capítulo 4 descreve os Experimentos realizados e a configura-
ção dos cenários. O Capítulo 5 apresenta e discute os Resultados obtidos nas análises de
segurança. Por fim, o Capítulo 6 traz as Considerações Finais e sugestões para trabalhos
futuros.



2 FUNDAMENTAÇÃO TEÓRICA

Esta seção aborda os pilares teóricos que fundamentam a presente pesquisa. Serão
abordados os conceitos essenciais de Computação em Nuvem e sua evolução para a Com-
putação de Borda, o contexto dos sistemas automatizados de controle de acesso veicular
junto a visão computacional, e os princípios indispensáveis de Segurança da Informação
e Criptografia que norteiam a proposta deste trabalho.

2.1 Computação em Nuvem e Arquiteturas Distribuídas

A Computação em Nuvem (Cloud Computing) representa um modelo de entrega
de serviços computacionais pela internet, caracterizado pela elasticidade, escalabilidade e
acesso sob demanda a um conjunto compartilhado de recursos configuráveis, como servi-
dores, armazenamento, aplicações e redes. Esse paradigma transformou a infraestrutura
de TI, permitindo que organizações substituam o alto investimento em hardware local por
um modelo de custo operacional mais flexível [8]. Os serviços em nuvem são geralmente
categorizados nos modelos Infraestrutura como Serviço (IaaS), Plataforma como Serviço
(PaaS) e Software como Serviço (SaaS) [9]. A Figura 1 ilustra essa hierarquia.

Figura 1 – Hierarquia dos níveis de controle de cada categoria de computação em nuvem

Fonte: Adaptado de [10]

Apesar de sua predominância, o modelo de nuvem puramente centralizado encontra
desafios em aplicações que geram um grande volume de dados e exigem processamento
em tempo real [11]. A latência, resultante da distância física entre o local de geração dos
dados e os data centers da nuvem, pode tornar inviável a operação de sistemas críticos que
dependem de respostas em torno de milissegundos, como o controle de acesso veicular.
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Portanto, o envio contínuo de dados brutos, como streams de vídeo, para a nuvem
consome uma quantidade significativa de largura de banda [12] e pode gerar custos adi-
cionais em alguns casos (quando se tem um armazenamento em uma nuvem pública, por
exemplo), então se faz necessária uma curadoria e uma análise sobre o tipo e a quantidade
de dados que serão enviados à nuvem, para não comprometer o fluxo de trabalho de um
sistema.

Contudo, apesar da escalabilidade e flexibilidade oferecidas pela Computação em
Nuvem, este modelo centralizado enfrenta limitações quando aplicado a cenários que exi-
gem baixa latência e largura de banda otimizada. O envio massivo de dados brutos para
processamento remoto pode gerar gargalos na rede e atrasos inaceitáveis para aplicações
de tempo real. É para mitigar essas limitações e aproximar o processamento da fonte de
dados que surge o paradigma da Computação de Borda, detalhado na seção a seguir.

2.2 Computação de Borda

A Computação de Borda pode ser vista de duas formas: primeiro, como uma topo-
logia de computação distribuída projetada especificamente para endereçar as limitações
inerentes ao modelo centralizado da Computação em Nuvem[13], e segundo, como uma
sub área da Computação em Nuvem[14].

Em um cenário onde dispositivos de IoT(Internet of Things), como câmeras, sen-
sores e atuadores, geram volumes exponenciais de dados (o que chamamos de Big Data),
a dependência exclusiva da nuvem para processamento traz desafios significativos de la-
tência, consumo de largura de banda e custos operacionais [12]. Então, a Computação de
Borda propõe uma arquitetura descentralizada onde o processamento de dados é deslo-
cado da nuvem central para a “borda” da rede, ou seja, para um ponto mais próximo da
fonte de onde os dados são gerados e coletados [15].

Esta subárea traz uma proposta de ideia que se baseia na otimização do fluxo de
dados. Segundo Cristino e Caminha [16], ao transferir o processamento de dados para
dispositivos de borda, como gateways ou computadores embarcados, é possível minimizar
drasticamente a latência e possibilitar a tomada de decisões locais em milissegundos, sem
necessidade de retorno completo à nuvem. Esta proximidade física é o que permite uma
certa minimização da latência, pois as decisões críticas podem ser tomadas localmente,
sem a necessidade de aguardar o ciclo completo de comunicação com a nuvem [16]. A
arquitetura fundamental e os casos de uso deste modelo podem ser visualizados na Figura
2.

É importante frisar que a borda não visa substituir a nuvem, mas sim estendê-la,
criando um “contínuo computacional”, conceito chamado de ECC (Edge-Cloud Conti-
nuum) [18]. A nuvem permanece essencial para tarefas que exigem alto poder de pro-
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Figura 2 – Casos de Uso da Computação de Borda

Fonte: Adaptado de [17]

cessamento e armazenamento de longo prazo, como o treinamento de modelos complexos
de Machine Learning e a realização de análises de Big Data. Nesse modelo híbrido, os
dispositivos de borda atuam como uma primeira camada inteligente, realizando tarefas de
pré-processamento, filtragem e coleta de dados; essas ações acabam tornando-se insumos
eficientes para as tarefas que serão feitas na nuvem, beneficiando também modelos de
inteligência artificial [19].

Essa arquitetura resulta em benefícios operacionais claros. Primeiramente, há uma
otimização massiva do uso da largura de banda, pois o tráfego de dados desnecessários
ou redundantes pela rede é eliminado. Em segundo lugar, a eficiência geral do sistema
aumenta, já que a nuvem é liberada de tarefas de processamento de baixo nível. Por fim,
um dos benefícios mais vantajosos é a capacidade de operação autônoma. Em caso de
falha na conexão com a internet ou instabilidade na comunicação com a nuvem, o sistema
na borda pode continuar operando suas funções essenciais, garantindo a resiliência e a
disponibilidade do serviço. Esta resiliência é válida para as outras áreas das arquitetu-
ras distribuídas que funcionam também como uma extensão da Cloud Computing, tais
como a Fog Computing (Computação de Névoa) e a Mist Computing (Computação de
Bruma) [20]. A Figura 3 demonstra esta abstração das extensões da nuvem, ilustrando
como as camadas de processamento se distribuem desde o dispositivo final até o servidor
central.
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Figura 3 – Arquitetura IoT com Mist, Fog e Cloud Computing

Fonte: Adaptado de [20]

2.3 Aplicações da Computação de Borda em Visão Computaci-
onal

A Visão Computacional é uma área da ciência da computação e da inteligência
artificial que visa capacitar os computadores a “ver”, interpretar e compreender o mundo
visual [21, 22]. De forma análoga à visão humana, ela utiliza dados de entrada, como
imagens e vídeos, para extrair, processar, analisar e entender informações, permitindo
que uma máquina tome decisões ou execute ações baseadas nessa compreensão. Esta área
da computação não se limita a simplesmente replicar a captura de imagens, mas envolve
uma série complexa de tarefas para extrair significado e contexto do conteúdo visual,
como detecção de objetos, segmentação, rastreamento e reconhecimento de padrões [22].

O desenvolvimento desta área foi acelerado pelos avanços em Machine Learning
(Aprendizado de Máquina) e, mais especificamente, em Deep Learning (Aprendizado Pro-
fundo) [23, 24]. Modelos como as Redes Neurais Convolucionais (CNNs) tornaram-se o
estado da arte para tarefas de reconhecimento de imagem, superando métodos tradicio-
nais em precisão e robustez [23, 6, 24, 21]. A aplicação específica de LPR (License Plate
Recognition), que é fundamental para o domínio de aplicação deste trabalho, é um exem-
plo clássico de um pipeline de Visão Computacional [23, 6]. Esse processo geralmente
envolve múltiplas etapas: 1) Aquisição da Imagem (captura pela câmera); 2) Detecção de
Objetos (localização da placa do veículo dentro do enquadramento da imagem); 3) Seg-
mentação (isolamento da placa do restante da cena); e 4) Reconhecimento, onde técnicas
de Reconhecimento Óptico de Caracteres (OCR) são aplicadas para converter os pixels
dos caracteres da placa em texto digital [6, 23]. A Figura 4 demonstra esse reconhecimento
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de caracteres.

Figura 4 – Etapas do processamento de imagem feito pelo OCR

Fonte: Imagem do Autor

O sucesso e a alta precisão desses modelos de Deep Learning, no entanto, vêm
acompanhados de uma demanda computacional significativa, especialmente durante o
processo de inferência (a aplicação do modelo treinado em dados novos) [23, 6]. Essa alta
carga computacional é um dos principais fatores que impulsionam a adoção da Computa-
ção de Borda [23, 25]. Enviar um fluxo de vídeo contínuo e de alta definição para a nuvem
para realizar a análise LPR é, em muitos casos, inviável devido a três fatores principais:
os custos de largura de banda, a latência inaceitável para uma aplicação em tempo real
(como a abertura de uma cancela) [25, 23, 26] e os riscos de privacidade.

Ao processar o vídeo localmente na borda, evita-se a transmissão de dados brutos
e sensíveis, como o fluxo de vídeo completo, que pode conter imagens dos ocupantes do
veículo ou do entorno, minimizando a exposição desses dados a interceptações. Torna-
se, portanto, muito mais eficiente e seguro executar a inferência do modelo de Visão
Computacional diretamente no dispositivo de borda, como o Raspberry Pi, processando
o vídeo localmente e em tempo real [23, 25, 26, 27].
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2.4 Conteinerização

No desenvolvimento de sistemas distribuídos modernos, especialmente em arqui-
teturas de borda, a forma como as aplicações são empacotadas e implantadas é um fator
importante a ser considerado, tanto para a sustentação quanto para a manutenção e se-
gurança do projeto. A conteinerização, popularizada por tecnologias como o Docker [28],
Podman [29] e Kubernetes [30], surge como uma solução de virtualização em nível de
sistema operacional que oferece uma resposta eficaz a esses desafios.

O estudo de Casella [31] demonstra que, diferentemente das máquinas virtuais tra-
dicionais (VMs), que dependem de um hipervisor — uma camada de software que emula
o hardware físico (CPU, memória e disco) para executar um sistema operacional “convi-
dado” (Guest OS) completo —, os contêineres são muito mais leves. Uma VM consome
quantidades significativas de recursos e resulta em tempos de inicialização mais longos,
pois precisa carregar um sistema operacional inteiro. Em contrapartida, um contêiner
compartilha o kernel do sistema operacional do hospedeiro (Host OS), encapsulando ape-
nas a aplicação e suas dependências (bibliotecas, bins e arquivos de configuração) em um
ambiente isolado [28]. Para melhor entendimento, é comum comparar a arquitetura de
contêineres com a de Máquinas Virtuais (VMs), como ilustrado na Figura 5.

Figura 5 – Comparação de uma arquitetura Tradicional com a de uma VM e de um Con-
têiner

Fonte: Adaptado de [30]

A adoção desta abordagem traz um conjunto de benefícios fundamentais para a
implantação em dispositivos de borda. A portabilidade é um dos principais, pois a aplica-
ção e suas dependências são empacotadas em uma imagem imutável [28]. Isso garante que
o ambiente de execução seja idêntico e reprodutível, eliminando conflitos de dependência,
seja em um servidor de desenvolvimento ou no dispositivo de borda (como o Raspberry
Pi). Aliada a isso, a leveza [31] é uma característica essencial para hardware com recur-
sos computacionais e memória limitados. Como os contêineres compartilham o kernel do
hospedeiro e não carregam o overhead de um sistema operacional completo, eles iniciam
em segundos e permitem uma maior densidade de serviços no mesmo dispositivo.
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Por fim, a segurança é uma característica frequentemente discutida. Um contêiner
executa o processo da aplicação em um sandbox (ambiente isolado), com seu próprio
sistema de arquivos e pilha de rede. Segundo Alencar [28], o Docker possui recursos
avançados de segurança. Porém, outros estudos, como o de Casella [31] e o de Miers et
al. [32], demonstram que uma de suas principais fragilidades está na execução do daemon
com privilégios administrativos, o que pode deixar brechas para modificações indevidas
em arquivos restritos. Em suma, diante dos fatos apresentados, faz-se necessária uma
análise cuidadosa das configurações dos arquivos e do ambiente em que os contêineres
Docker forem implementados para garantir um ambiente seguro.

2.5 Segurança da Informação em Ambientes Distribuídos

Segundo Nascimento e Costa [33] e Ferreira [34], a segurança da informação visa
proteger os dados e sistemas para garantir a continuidade do negócio, sustentando-se so-
bre a tríade de confidencialidade, integridade e disponibilidade (CIA) [5]. Neste trabalho,
a Confidencialidade garante que os dados de placas e imagens dos veículos sejam ina-
cessíveis a pessoas não autorizadas. A Integridade assegura que esses dados não possam
ser alterados maliciosamente em trânsito, por exemplo, trocando uma placa autorizada
por uma não autorizada. A Disponibilidade garante que o sistema de controle de acesso
funcione ininterruptamente.

A arquitetura de borda, embora benéfica, introduz vetores de ataque específicos. O
dispositivo de borda pode ser alvo de acesso físico não autorizado, ataques de negação de
serviço (DoS) [35] na rede local e ataques Man-in-the-Middle (MitM) [36] para interceptar
a comunicação entre a borda e a nuvem. Nesse caso, uma estratégia de segurança robusta,
que vá além da proteção do perímetro da nuvem e inclua o fortalecimento dos dispositivos
de borda, é indispensável.

Uma das principais ferramentas para garantir essa segurança é a criptografia, que
é a ciência e a arte de escrever mensagens em forma codificada [26]. No contexto da
Computação de Borda, a aplicação de técnicas criptográficas robustas é essencial para
proteger o fluxo de dados em trânsito contra interceptações.

Historicamente, a criptografia pode ser classificada em duas categorias principais:

• Criptografia Simétrica: Utiliza uma única chave secreta compartilhada entre
as partes. Algoritmos como o AES (Advanced Encryption Standard), citado por
Queiroz [25], são o padrão da indústria devido à sua extrema velocidade e eficiência
computacional, sendo ideais para cifrar grandes volumes de dados. Seu principal
desafio é o problema da distribuição segura da chave, que pode apresentar problemas
de escalabilidade [26].
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• Criptografia Assimétrica: Utiliza um par de chaves (pública e privada). Dados
criptografados com a chave pública só podem ser descriptografados com a chave pri-
vada correspondente. Algoritmos como o RSA (Rivest-Shamir-Adleman) e aqueles
baseados em curvas elípticas (ECDH, ECDSA) são usados para estabelecer auten-
ticidade e troca segura de informações [25]. Sua desvantagem é ser computacional-
mente intensiva e mais lenta, o que a torna inviável para criptografar todo o volume
de dados de uma comunicação [26].

Para mitigar as desvantagens de cada abordagem, a solução padrão da indústria é
a criptografia híbrida, que combina a segurança da criptografia assimétrica para a troca
de chaves com a velocidade da criptografia simétrica para a proteção dos dados. O mo-
delo envolve o uso da criptografia assimétrica apenas no início para negociar uma chave
de sessão temporária (simétrica). Uma vez estabelecida, a comunicação passa a usar a
criptografia simétrica, muito mais rápida. Este é o princípio fundamental de protocolos
como o TLS (Transport Layer Security) [26].

Além da confidencialidade, a criptografia fornece mecanismos para a integridade
e autenticidade através de funções de hash criptográfico (como SHA-256), que criam
uma “impressão digital” única dos dados. Qualquer alteração resultará, com altíssima
probabilidade, em um hash diferente, permitindo a verificação da integridade [26]. Ao
combinar hashing com criptografia assimétrica, criam-se assinaturas digitais, que provam
inequivocamente que a mensagem veio do remetente esperado (autenticidade) e não foi
alterada (integridade) [25]. Em uma arquitetura de borda, a aplicação correta desses
conceitos é um requisito fundamental para proteger o fluxo de dados.

2.6 Trabalhos Relacionados

Nesta seção, são apresentados trabalhos que abordam a Computação de Borda
em conjunto com aspectos de segurança, desempenho ou arquitetura para ambientes de
IoT, contextualizando a pesquisa e destacando suas contribuições específicas. Na tabela
1 foram feitas as comparações entre os trabalhos relacionados, abordando as informações
chaves de cada trabalho.

A crescente necessidade de processar dados mais perto de sua origem, impulsionada
por requisitos de baixa latência, economia de banda e maior autonomia, consolidou a
Computação de Borda como um paradigma relevante. No entanto, essa descentralização
introduz novos desafios de segurança, especialmente no fluxo de dados entre a borda e
outros sistemas, como servidores centralizados ou em nuvem.

Cesar [37] propõe uma arquitetura de controle de acesso para IoT utilizando Com-
putação de Borda com o objetivo principal de melhorar a disponibilidade dos serviços.
O trabalho utiliza a borda para descentralizar a arquitetura e otimizar a troca de dados
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Tabela 1 – Tabela comparativa dos trabalhos relacionados

Ref. ACB FPS FCI FDD UCF ICH AAM Ferramentas

Cesar (2022) ✓ ✓ ✓ Controle
de Acesso,
GraphQL,
JWT

Silvério &
Guardia
(2021)

✓ ✓ ✓ Filtragem
de Kernel,
Raspberry
Pi, Energia

Kraus
(2021)

✓ ✓ Desempenho
5G, Latência

Negri (2025) ✓ ✓ ✓ Vulnerabs.
Echo, Au-
tenticação
SMS/Hash

Schenfeld
(2017)

✓ ✓ ✓ ✓ Arquitetura
Híbrida,
TLS/DTLS

Trabalho
Proposto

✓ ✓ ✓ ✓ ✓ ✓ ✓ Criptografia
Híbrida, De-
fesa MitM

Legenda: ACB = Aplica Computação de Borda; FPS = Foco Principal em Segurança; FCI = Foco em
Confidencialidade/Integridade; FDD = Foco em Disponibilidade/Desempenho; UCF = Usa Criptografia

no Fluxo; ICH = Implementa Criptografia Híbrida; AAM = Aborda Ataque MitM.

com GraphQL, mitigando a sobrecarga em um ponto central. A segurança é abordada
sob a perspectiva de controle de acesso baseado em políticas e contexto , utilizando au-
tenticação via JWT. Embora utilize a borda e tenha um componente de segurança, difere
deste trabalho por focar na disponibilidade e no controle de acesso, enquanto neste traba-
lho concentra-se na confidencialidade e integridade dos dados em trânsito contra ataques
MitM por meio de criptografia híbrida.

Silverio e Guardia [38] focam diretamente no conceito de “Edge Security”, investi-
gando a filtragem de pacotes na borda da rede. O trabalho compara diferentes mecanismos
de filtragem disponíveis no kernel Linux (iptables, nftables, BPF, XDP) implementados
em um dispositivo de borda (Raspberry Pi) , analisando o impacto no consumo de energia
e na carga da CPU. A motivação é processar/descartar pacotes maliciosos o mais cedo
possível , considerando as restrições de dispositivos de borda. Assim como neste trabalho,
aplica a segurança diretamente na borda, mas a abordagem é diferente: filtragem base-



35

ada em regras para bloquear tráfego versus criptografia para proteger o conteúdo contra
interceptação e adulteração (MitM).

Kraus [39] explora a aplicação da Computação de Borda habilitada por redes 5G
para aplicações industriais que exigem latência ultrabaixa e alta confiabilidade. Utilizando
simulação com Free5GC e UERANSIM , o trabalho quantifica a redução de latência ao
acessar uma rede de dados local (Borda) em comparação com uma rede remota (Data Cen-
ter) , utilizando mecanismos como UL CL para direcionamento de tráfego. A segurança
não é o foco principal da análise. Este trabalho é relevante por demonstrar experimen-
talmente um dos principais motivadores da Computação de Borda (redução de latência),
cenário no qual a segurança do fluxo de dados, que é o foco deste TCC, torna-se crucial.

Negri [40] investiga vulnerabilidades em dispositivos IoT de borda, especificamente
os Amazon Echo (com Alexa). O estudo discute diversas ameaças, incluindo ataques MitM
, e implementa um proof-of-concept de autenticação de usuário via SMS (Short Message
Service), utilizando uma skill da Alexa e armazenamento seguro de credenciais (hashes
SHA-256) no backend. Embora aborde a segurança em um dispositivo de borda popular
e mencione MitM, o foco difere deste TCC, pois se concentra na autenticação do usuário
e análise geral de vulnerabilidades, em vez de proteger especificamente o fluxo de dados
em trânsito com criptografia contra interceptação/adulteração.

Schenfeld [41] apresenta uma arquitetura híbrida Fog/Edge Computing para IoT,
visando reduzir latência e dependência da nuvem. A arquitetura define uma camada
“Edge” nos próprios dispositivos e uma camada “Fog” em gateways (SoCs). Um aspecto
relevante é a inclusão explícita de segurança na comunicação entre as camadas (Edge-Fog
e Fog-Cloud) por meio dos protocolos TLS/DTLS. Esse trabalho se aproxima deste TCC
por implementar segurança para dados em trânsito em uma arquitetura de borda/névoa.
Contudo, utiliza os protocolos padrão TLS/DTLS. Embora estes também operem com
criptografia híbrida, a proposta deste trabalho se distingue pela implementação dedicada
e controlada dos algoritmos AES e RSA, visando demonstrar experimentalmente a eficá-
cia mecânica dessa defesa contra ataques MitM em um cenário de borda, permitindo uma
análise detalhada do fluxo cifrado.

Em suma, os trabalhos relacionados demonstram a relevância da Computação de
Borda para IoT, seja por benefícios de desempenho (latência, disponibilidade) ou como
ponto estratégico para aplicação de segurança (controle de acesso, filtragem, autentica-
ção). Este trabalho contribui para esta área ao focar especificamente na vulnerabilidade
do fluxo de dados Borda-Servidor a ataques Man-in-the-Middle e ao implementar e vali-
dar a eficácia da criptografia híbrida (AES+RSA) como solução prática para garantir a
confidencialidade e a integridade de dados sensíveis neste contexto.



3 MÉTODO DE PESQUISA

Este capítulo detalha a metodologia empregada para o desenvolvimento prático da
pesquisa deste trabalho. A pesquisa é classificada como aplicada, pois visa a concepção e
implementação de uma solução tecnológica para um problema prático, a vulnerabilidade
de dados sensíveis em trânsito em sistemas de borda, e experimental, pois envolveu a
construção de um protótipo funcional em um ambiente de laboratório controlado, onde
variáveis foram manipuladas para simular ameaças reais e validar a eficácia da contrame-
dida de segurança proposta.

Os objetivos práticos deste método foram estruturados para responder à questão
de pesquisa: construir um protótipo de borda capaz de realizar o reconhecimento de
placas, analisar sua vulnerabilidade em um cenário padrão, implementar uma camada de
criptografia híbrida robusta e, por fim, validar a solução por meio da simulação controlada
de ataques MitM e DoS.

3.1 Arquitetura e Ambiente Experimental

Para a realização dos experimentos, foi configurada uma infraestrutura de rede
local (LAN) composta por três componentes de hardware principais, simulando um ecos-
sistema de Computação de Borda e a presença de um agente malicioso.

• Dispositivo de Borda: Foi utilizado um Raspberry Pi 4 Model B (4 GB de RAM),
operando com o sistema Raspberry Pi OS Lite (64 bits) em modo headless (sem
interface gráfica), com o objetivo de otimizar o uso de recursos. Este dispositivo,
equipado com uma webcam USB, tinha a função de capturar o vídeo, executar o
processamento de LPR localmente e enviar os dados da placa ao servidor.

• Servidor Central (Cloud/Backend): Um Desktop PC (Intel i5, 8GB RAM),
executando o sistema Ubuntu Server representou o ambiente de backend do sistema.
Este servidor hospedou a API de validação e a base de dados de veículos autori-
zados, com a aplicação sendo gerenciada via Docker para garantir portabilidade e
isolamento.

• Estação do Atacante: Um notebook com Arch Linux foi posicionado na mesma
rede, destinado à execução das ferramentas de análise de tráfego e à realização dos
ataques de interceptação e negação de serviço.

A topologia de rede consistiu em conectar os três dispositivos (borda, servidor
e atacante) via cabo a um mesmo switch de rede. A Figura 6 demonstra a topologia
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montada para o experimento.

Figura 6 – Topologia de rede montada para o experimento

Fonte: Imagem do Autor

A opção pela utilização exclusiva de uma rede cabeada (Ethernet), em detrimento
de uma rede sem fio (WLAN), deu-se por razões de estabilidade e controle do ambiente
experimental. Anteriormente, foram realizados testes com interfaces de rede sem fio no
servidor, porém foram observadas instabilidades críticas no subsistema de rede do sistema
operacional Ubuntu Server. Tais falhas ocasionaram conflitos de roteamento e erros re-
correntes durante tentativas de conexão SSH na mesma sub-rede, o que desencadeou um
comportamento anormal no serviço de logging do sistema (processo systemd-journald).

Esse erro gerou uma “tempestade de logs” (log storm) que consumiu rapidamente
o armazenamento em disco do servidor, comprometendo a execução dos contêineres e a
validade dos testes. Portanto, para isolar variáveis de instabilidade de infraestrutura e
focar exclusivamente na validação dos protocolos de segurança e criptografia propostos,
adotou-se a topologia cabeada via switch, garantindo um canal de comunicação estável e
previsível para a simulação dos ataques.

O desenvolvimento deste trabalho foi dividido em quatro etapas principais, conce-
bidas para seguir um fluxo lógico desde a concepção até a validação final dos resultados.
Para facilitar a compreensão do roteiro metodológico adotado, a Figura 7 apresenta visu-
almente a sequência das etapas percorridas.

Conforme ilustrado na Figura 7, a primeira etapa consistiu na definição do am-
biente e dos requisitos, incluindo a montagem da infraestrutura de hardware (Raspberry
Pi, servidor e máquina atacante) e a configuração da topologia de rede e a definição dos
parâmetros de configuração. Os requisitos definidos foram: análise e processamento da
placa do veículo na borda, comunicação constante e eficiente com o servidor, e garantia
de confidencialidade e integridade dos dados.
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Figura 7 – Fluxograma das etapas do desenvolvimento da pesquisa

Fonte: Imagem do Autor

A segunda etapa foi a implementação do protótipo, na qual os componentes de
software foram desenvolvidos. Isso incluiu a refatoração e adaptação do código LPR de
um projeto de código aberto para uma biblioteca, o desenvolvimento do código do cliente
de borda em Python com sua lógica de captura (usando OpenCV), e a criação do servidor
de API em Flask e sua conteinerização com Docker, além da integração da criptografia
híbrida.

A terceira etapa compreendeu a simulação e execução dos testes, onde foram pla-
nejados três cenários distintos para avaliar o sistema: um teste de interceptação (MitM)
em tráfego inseguro (texto puro), um teste de interceptação em tráfego seguro (com crip-
tografia híbrida), e um teste de ataque DoS contra o dispositivo de borda.

Por fim, a quarta etapa envolveu a análise de resultados e validação. Nesta fase,
os dados coletados foram examinados para verificar se os objetivos de segurança foram
atingidos, validando especificamente as métricas de Confidencialidade, Integridade e Dis-
ponibilidade do sistema.

3.2 Implementação da Mitigação de Segurança

Para solucionar a vulnerabilidade de interceptação de dados, o método escolhido
foi a implementação de um esquema de criptografia híbrida, combinando a velocidade
do AES (simétrico) com a segurança do RSA (assimétrico) para a troca de chaves. O
procedimento de comunicação segura foi definido da seguinte forma:

• Preparação: Um par de chaves RSA (2048 bits) é gerado. A chave privada é arma-
zenada com segurança no servidor (dentro do contêiner Docker), e a chave pública é
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transferida para o cliente Raspberry Pi utilizando o protocolo de rede SCP(Secure
Copy Protocol) durante a fase de provisionamento do ambiente, garantindo que o
dispositivo possua a credencial necessária antes do início da execução..

• Requisição (Cliente): Ao capturar uma placa, o cliente gera uma chave de sessão
AES (128 bits) de uso único. Em seguida, criptografa o dado principal (JSON da
placa) com essa chave AES e protege a própria chave AES utilizando a chave pública
RSA do servidor. Ambos os dados cifrados são enviados ao servidor.

• Processamento (Servidor): O servidor utiliza sua chave privada RSA para des-
criptografar a chave de sessão AES. Com a chave AES em mãos, ele descriptografa
o JSON da placa e realiza a validação.

• Resposta (Servidor): O servidor reutiliza a mesma chave de sessão AES para
criptografar a resposta do acesso (autorizado/negado) e a envia de volta ao cliente.

• Validação (Cliente): O cliente usa sua chave AES original (ainda em memória)
para descriptografar a resposta e confirmar a autorização.

Considerando um vetor de ataque restrito à interceptação e adulteração de tráfego
de rede, a solução garante a proteção dos dados. Em conformidade com o princípio de
Kerckhoffs [42], a segurança do sistema independe do segredo sobre o algoritmo utilizado.
Dessa forma, um atacante só obteria êxito na decifragem do conteúdo caso fosse capaz
de violar a segurança matemática dos protocolos RSA (2048 bits) e AES (128 bits) ou
comprometer a chave privada armazenada no servidor.

3.3 Métricas e Critérios de Avaliação

Para avaliar a segurança da arquitetura, foram planejados três cenários de teste,
utilizando ferramentas específicas para simular ameaças. As ferramentas de análise sele-
cionadas foram o Wireshark [43] e o tshark [44], utilizadas para a captura e inspeção
detalhada de pacotes de rede. Para a simulação dos ataques, empregaram-se as ferramen-
tas hping3 [45], para gerar o ataque DoS do tipo SYN Flood, e a ferramenta arpspoof [46]
(do pacote dsniff [47]), para realizar o envenenamento de cache ARP, etapa fundamental
para a execução do ataque Man-in-the-Middle.

O plano de testes, cujos resultados serão apresentados no Capítulo 4, foi dividido
nos seguintes cenários:

• Cenário 1 – Teste de Vulnerabilidade: consistiu na execução do sistema sem cripto-
grafia, a fim de verificar a visibilidade dos dados (placa) em texto puro;
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• Cenário 2 – Teste de Validação da Solução: repetiu o mesmo ataque MitM contra o
sistema protegido com criptografia híbrida, buscando validar a confidencialidade e
a integridade dos dados;

• Cenário 3 – Teste de Disponibilidade: concentrou-se na execução de um ataque DoS
com o hping3, direcionado ao dispositivo de borda, avaliando o impacto desse ataque
sobre a sua operação.

A avaliação dos resultados foi conduzida de forma qualitativa e comparativa, con-
trastando o comportamento do sistema e a natureza dos pacotes capturados em cada
cenário. Os critérios de avaliação foram fundamentados nos pilares da segurança da infor-
mação:

• Confidencialidade: Avaliada pela verificação da legibilidade dos dados interceptados.
O critério de sucesso para a solução é que os dados trafegados sejam ininteligíveis
para o atacante;

• Integridade: Avaliada pela capacidade de detectar adulterações. O critério de sucesso
é que qualquer modificação no pacote cifrado resulte em falha na descriptografia,
impedindo a injeção de dados falsos;

• Disponibilidade: Avaliada pela observação do impacto do ataque de negação de
serviço sobre a operação do dispositivo de borda, medindo a saturação de recursos
(CPU) e a interrupção do serviço de comunicação.

Essas métricas permitiram comprovar experimentalmente se a criptografia híbrida
adotada era suficiente para garantir a confidencialidade e integridade dos dados em trân-
sito, bem como identificar vulnerabilidades adicionais relacionadas à disponibilidade.

3.4 Uso de Ferramentas de Inteligência Artificial

Este trabalho contou com o apoio de ferramentas de Inteligência Artificial genera-
tiva (Gemini, modelo 2.5, do Google), utilizadas para revisão linguística sob supervisão e
validação do autor.
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4 EXPERIMENTOS

Este capítulo documenta a execução dos testes práticos descritos na metodologia
de pesquisa. O foco é apresentar os três cenários experimentais que foram projetados para
avaliar a arquitetura do sistema. Cada cenário foi elaborado para testar um aspecto es-
pecífico da segurança: a operação normal e sua vulnerabilidade inerente, a capacidade de
um atacante interceptar e adulterar os dados (Ataque Man-in-the-Middle), e a resiliência
do dispositivo de borda a ataques de disponibilidade (Negação de Serviço). Os resulta-
dos detalhados, capturas de tela e evidências de cada experimento serão apresentados e
analisados no Capítulo 5.

4.1 Configuração do Ambiente Experimental

A primeira etapa da execução consistiu na montagem e validação do ambiente de
testes. A Figura 8 ilustra a estrutura de arquivos utilizada no servidor de API, conteine-
rizado por meio do Docker.

Figura 8 – Arquivos utilizados no ambiente do Servidor

Fonte: Imagem do Autor

Os componentes essenciais do ambiente de servidor são:

• servidor.py: Script principal da aplicação, escrito em Python utilizando o micro-
framework Flask. Este arquivo é o responsável por criar a API de validação, escutar
requisições HTTP, receber os dados da placa e verificar sua existência no arquivo
placas_cadastradas.json para retornar a autorização.

• Dockerfile: Arquivo de receita para a conteinerização da aplicação. Automatiza a
instalação do sistema operacional base e das dependências listadas em requirements.txt,
garantindo um ambiente isolado e reprodutível.

• placas_cadastradas.json: Arquivo JSON que simula uma base de dados NoSQL,
contendo a lista de placas autorizadas.
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• requirements.txt: Lista as bibliotecas Python necessárias, incluindo Flask (para
a API) e pycryptodome (para as operações criptográficas).

• chave_privada.pem: Componente crítico de segurança, a chave privada RSA de
2048 bits, mantida em segredo no servidor para descriptografar a chave de sessão
AES.

A Figura 9 mostra a estrutura de arquivos montada para o ambiente do dispositivo
de borda (Raspberry Pi).

Figura 9 – Arquivos utilizados no ambiente do Raspberry Pi

Fonte: Imagem do Autor

Os componentes do ambiente de borda são:

• cliente_borda.py: Script principal que orquestra a lógica de borda. Utiliza OpenCV
para captura de vídeo, aciona a biblioteca lpr_lib para processamento e requests
para comunicação com o servidor.

• chave_publica.pem: Chave pública RSA correspondente à chave privada do servi-
dor, usada para criptografar a chave de sessão AES antes do envio.

• requirements.txt: Define as bibliotecas do cliente, incluindo opencv-python, requests,
pycryptodome e matplotlib.

• lpr_lib (Pasta): Biblioteca modular resultante da refatoração do código LPR, per-
mitindo a importação da função “extrair_placa_do_frame()” pelo script princi-
pal.

4.2 Cenário 1: Fluxo de Dados Básico (Inseguro)

O primeiro cenário estabeleceu a base funcional do sistema, representando a co-
municação em seu estado mais simples e inseguro.

Como ilustrado na Figura 10, este cenário corresponde ao modelo de arquitetura
fundamental do projeto. O dispositivo de borda (Guarita + Raspberry Pi + Câmera)
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Figura 10 – Tráfego inseguro entre a Borda e o Servidor

Fonte: Imagem do Autor

executa o processamento local de LPR para identificar uma placa de veículo (ex: “ABC-
123”). Após a extração, o texto da placa é enviado pela rede LAN para o servidor. O
servidor verifica na base de dados se a placa está cadastrada e retorna uma resposta
de autorização (Aprovado ou Negado). Neste cenário, não há aplicação de criptografia,
servindo como linha de base para a análise de vulnerabilidade.

4.3 Cenário 2: Demonstração da Vulnerabilidade (MitM em Trá-
fego Inseguro e Seguro)

O segundo cenário introduziu um “Atacante” na mesma rede local para simular
o ataque MitM e testar a eficácia da criptografia híbrida implementada. O diagrama do
ataque é apresentado na Figura 11.

Figura 11 – Diagrama demonstrando o ataque MitM

Fonte: Imagem do Autor

Utilizando a técnica de ARP Spoofing, a máquina do atacante foi posicionada
logicamente entre o dispositivo de borda e o servidor, desviando todo o fluxo de tráfego.
É fundamental destacar que, neste experimento, o ARP Spoofing foi utilizado estritamente
como método de interceptação para viabilizar o ataque do tipo passivo, conhecido como
eavesdropping. Dessa forma, o atacante limitou-se a capturar e analisar os pacotes em
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trânsito para verificar a exposição dos dados, sem realizar injeção ou alteração ativa de
pacotes durante a captura. Este experimento foi dividido em duas fases:

1. Teste de Vulnerabilidade: O ataque MitM foi executado contra o fluxo de dados
inseguro do Cenário 1. A hipótese era que o atacante conseguiria violar a confiden-
cialidade (lendo os dados em texto puro) e a integridade (tendo a capacidade de
adulterar os dados).

2. Teste de Validação: O mesmo ataque MitM foi repetido contra o sistema com a
criptografia híbrida (AES+RSA) ativada. A hipótese era que a solução se mostraria
eficaz, tornando os dados interceptados cifrados e indecifráveis, impedindo a leitura
e a adulteração.

4.4 Cenário 3: Teste de Disponibilidade (Ataque DoS)

O terceiro cenário avaliou um vetor de ataque distinto, focado na disponibilidade
do hardware de borda. O ataque MitM posiciona o atacante na rede, permitindo não
apenas a interceptação, mas também ataques de negação de serviço.

Figura 12 – Diagrama demonstrando o Ataque DoS do tipo SYN Flood

Fonte: Imagem do Autor

Como demonstrado na Figura 12, este experimento investigou se um atacante
na mesma rede poderia paralisar a operação do dispositivo de borda. A hipótese é que
o Raspberry Pi, por ser um hardware de recursos limitados, é suscetível a ataques de
inundação de rede, como um SYN Flood. O atacante direcionou um alto volume de pacotes
maliciosos ao IP do Raspberry Pi com o objetivo de saturar seus recursos de CPU e rede,
impedindo a execução de suas tarefas essenciais. O “X” vermelho no diagrama simboliza
a falha do dispositivo e a interrupção do serviço.
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5 RESULTADOS

Este capítulo apresenta os resultados e as evidências práticas coletadas durante a
execução dos cenários definidos no Capítulo 4, documentando as observações e analisando
os dados à luz das métricas de segurança.

5.1 Resultados do Cenário 1: Tráfego Inseguro (Man-in-theMiddle)

Nesta fase, o sistema foi executado sem criptografia. A Figura 13 mostra o proces-
samento local bem-sucedido da placa “BRA2E19” pelo Raspberry Pi.

Figura 13 – Placa analisada e processada pelo Raspberry Pi

Fonte: Imagem do Autor

Em seguida, na Figura 14 apresenta a evidência crucial capturada pelo Wireshark.
Como pode ser observado, o tráfego inseguro expõe o pacote HTTP POST com o payload
JSON (“placa”: “BRA2E19”) em texto puro. Esta captura comprova uma falha crítica de
confidencialidade, permitindo que qualquer pessoa na rede leia os dados sensíveis. Embora
a ação realizada tenha sido apenas de escuta passiva (eavesdropping), a exposição em texto
claro confirma que não existem barreiras técnicas impedindo a perda de integridade, pois
um atacante que pode ler este formato pode facilmente replicá-lo ou adulterá-lo, como
explorado na metodologia.
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Figura 14 – Placa Interceptada no Wireshark

Fonte: Imagem do Autor

5.2 Resultados do Cenário 2: Tráfego Seguro (Validação da Crip-
tografia Híbrida)

Este experimento validou a solução de criptografia híbrida sob as mesmas condições
de ataque MitM descritas no Cenário 2. Primeiro, para evidenciar a execução do ataque
MitM, foram utilizados dois comandos arpspoof em terminais separados na máquina do
atacante. A Figura 15 documenta o envenenamento da tabela ARP do Raspberry Pi (-t
192.168.3.128), instruindo-o a enviar pacotes destinados ao servidor (192.168.3.2) para o
endereço MAC do atacante.

Figura 15 – Ataque de ARP spoofing no Raspebrry Pi

Fonte: Imagem do Autor

sudo arpspoof -i enp2s0 -t 192.168.3.128 192.168.3.2

Comando 1: Envenenando o Raspberry Pi

sudo: Permite executar o comando com privilégios de administrador.

arpspoof: É o nome do comando que executa o ataque de envenenamento de cache ARP
(ARP Spoofing).

-i enp2s0: Define a interface de rede que será usada para enviar os pacotes ARP falsi-
ficados.
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-t 192.168.3.128: Define o IP do target (alvo) que será envenenado (neste caso, o
Raspberry Pi).

192.168.3.2: Define o endereço IP que o atacante irá personificar (neste caso, o Servi-
dor).

Simultaneamente, a Figura 16 documenta o envenenamento do servidor (-t 192.168.3.2),
instruindo-o a enviar as respostas destinadas ao Raspberry Pi (192.168.3.128) também
para o atacante. Com estes dois comandos, o atacante se posicionou com sucesso como o
intermediário de toda a comunicação.

Figura 16 – Ataque de Arpspoofing no Servidor

Fonte: Imagem do Autor

sudo arpspoof -i enp2s0 -t 192.168.3.2 192.168.3.128

Comando 2: Envenenando o Servidor

sudo: Permite executar o comando com privilégios de administrador.

arpspoof: É o nome do comando que executa o ataque de envenenamento de cache ARP
(ARP Spoofing).

-i enp2s0: Define a interface de rede que será usada para enviar os pacotes ARP falsi-
ficados.

-t 192.168.3.2: Define o IP do target (alvo) que será envenenado (neste caso, o Rasp-
berry Pi).

192.168.3.128: Define o endereço IP que o atacante irá personificar (neste caso, o
Servidor).

Com o tráfego interceptado, os dados do sistema seguro foram analisados. A Figura
17 exibe o payload capturado do cliente. Diferentemente do Cenário 1, o conteúdo da
placa (“BRA2E19”) não é visível. Em seu lugar, observa-se um objeto JSON contendo a
chave de sessão criptografada, o vetor de inicialização (nonce), a tag de autenticação e o
payload_cifrado, que é uma sequência de caracteres codificados em Base64.
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Figura 17 – Tráfego criptografado pela criptografia híbrida - payload do cliente

Fonte: Imagem do Autor

Da mesma forma, a Figura 18 mostra que a resposta do servidor também está
cifrada, ocultando se a placa foi autorizada ou não.

Figura 18 – Tráfego criptografado pela criptografia híbrida - payload do servidor

Fonte: Imagem do Autor

Estas evidências comprovam que a solução foi eficaz em garantir a Confidenci-
alidade e a Integridade. O atacante não consegue ler o conteúdo (confidencialidade) e
qualquer alteração no texto cifrado invalidaria a tag de autenticação gerada pelo AES-
GCM, fazendo com que o servidor rejeitasse o pacote (integridade).

No entanto, é importante destacar o custo da segurança observado nesta análise.
Ao comparar o tamanho do pacote HTTP no Cenário 1 (Figura 14), que continha apenas
um JSON simples e leve, com o pacote do Cenário 2 (Figura 17), nota-se um aumento
significativo no tamanho do payload (overhead). Esse aumento deve-se à necessidade de
transmitir metadados adicionais de segurança, especialmente a chave de sessão AES crip-
tografada com RSA de 2048 bits, que ocupa um espaço considerável, além do nonce e da
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tag. Esse incremento no consumo de banda é o compromisso (trade-off ) necessário para
assegurar a proteção dos dados em um meio não confiável.

5.3 Resultados do Cenário 3: Ataque DoS

O último experimento avaliou a vulnerabilidade de Disponibilidade. A Figura 19
estabelece a linha de base, mostrando o Raspberry Pi em operação normal com carga de
CPU estável.

Figura 19 – Raspberry Pi e a aplicação operando normalmente

Fonte: Imagem do Autor

Em seguida, o ataque SYN Flood foi iniciado usando a ferramenta hping3, con-
forme demonstrado na Figura 20, registrando o envio massivo de milhões de pacotes.

Figura 20 – Terminal do atacante executando o ataque com o hping3

Fonte: Imagem do Autor

O comando utilizado é detalhado abaixo:
sudo hping3 --flood -S -p 8000 192.168.7.65

Comando 3: Ataque DoS (SYN Flood) ao Raspberry Pi

sudo: Permite executar o comando com privilégios de administrador.

hping3: É o nome da ferramenta, um gerador e analisador de pacotes de rede utilizado
para testes de segurança.
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–flood: Instrui a ferramenta a enviar pacotes o mais rápido possível (modo “inunda-
ção”), sem aguardar por respostas.

-S: Define o flag SYN (de sincronização) no cabeçalho do pacote TCP, caracterizando o
ataque como um SYN Flood.

-p 8000: Define a porta de destino do ataque (neste caso, a porta 8000, onde o serviço
de streaming de vídeo do cliente estava a ser executado).

192.168.7.65: Define o endereço IP do alvo que receberá a inundação de pacotes (neste
caso, o Raspberry Pi).

A Figura 21 documenta o impacto imediato no dispositivo. O painel htop mostra
um aumento significativo na carga média (Load Average para 1.12), indicando sobrecarga
no processamento de interrupções de rede. O resultado crítico é observado no log da
aplicação, que passa a registrar erros sistemáticos de “[Errno 111] Connection refused”.

Figura 21 – Raspberry Pi durante o ataque de SYN Flood

Fonte: Imagem do Autor

Este experimento evidenciou uma vulnerabilidade crítica na Disponibilidade. O
subsistema de rede do Raspberry Pi foi saturado, exaurindo o backlog de conexões e
impedindo o estabelecimento de novas conexões legítimas, paralisando efetivamente o
serviço. Para mitigar este cenário em trabalhos futuros e fortalecer a disponibilidade,
recomenda-se a implementação de regras de firewall (como iptables) diretamente no
dispositivo de borda para limitar a taxa de novas conexões (rate limiting) ou o uso de
mecanismos de filtragem de pacotes de alto desempenho no kernel, como o eXpress Data
Path (XDP), para descartar tráfego malicioso antes que ele consuma recursos significativos
do sistema.
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6 CONCLUSÃO

Este trabalho alcançou seu objetivo geral de avaliar experimentalmente a segurança
em Computação de Borda, validando a eficácia da criptografia híbrida na proteção do fluxo
de dados. Em relação aos objetivos específicos, o protótipo utilizando Raspberry Pi foi
implementado com sucesso, permitindo a simulação realista de um cenário de controle
de acesso. A análise de vulnerabilidade confirmou, por meio de interceptação passiva, a
exposição crítica de dados em redes inseguras. A implementação da criptografia híbrida
mitigou esse risco, garantindo a confidencialidade e integridade das informações. Por fim,
os testes de estresse demonstraram as limitações de disponibilidade do dispositivo de
borda frente a ataques de negação de serviço

A execução do Cenário 1 (Inseguro) forneceu evidências claras de falhas de con-
fidencialidade e integridade, onde os dados sensíveis (placas de veículos) foram intercep-
tados e lidos em texto puro. Para solucionar esta vulnerabilidade, a implementação de
uma criptografia híbrida (AES+RSA), detalhada na metodologia, foi validada no Cenário
2. Os resultados comprovaram que a solução foi eficaz, tornando os dados interceptados
indecifráveis e garantindo a segurança do fluxo de dados nos dois sentidos (requisição e
resposta) contra adulteração e espionagem.

Adicionalmente, a pesquisa expôs uma segunda vulnerabilidade crítica, investigada
no Cenário 3. Foi demonstrado que a disponibilidade do dispositivo de borda (Raspberry
Pi), por ser um hardware de recursos limitados, é um vetor de ataque distinto. Um ataque
DoS do tipo SYN Flood foi capaz de saturar os recursos do dispositivo e paralisar a apli-
cação, provando que a segurança de borda deve ir além da criptografia. Como limitações,
este estudo focou na validação funcional da criptografia sem uma análise quantitativa
do overhead de desempenho (latência/CPU) e não implementou contramedidas para o
ataque DoS.

Para trabalhos futuros, recomenda-se a realização dessa análise de desempenho da
criptografia, a implementação e teste de mecanismos de mitigação de DoS na “borda”
(como iptables) e a investigação de métodos escaláveis para o gerenciamento de chaves
em um ambiente com múltiplos dispositivos. Conclui-se que a Computação de Borda exige
uma estratégia de segurança deliberada, e que a criptografia híbrida é uma solução prática
e eficaz para proteger a confidencialidade e a integridade dos dados gerados por ela.
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