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RESUMO

A Computacao de Borda (Edge Computing) é um paradigma em ascensao para aplica-
¢oes de Internet das Coisas (Internet of Things - 10T), permitindo o processamento de
dados préximo a sua origem, como em sistemas de Reconhecimento de Placas Veiculares
(License Plate Recognition - LPR). Contudo, essa arquitetura introduz novos desafios de
seguranca, especificamente no fluxo de dados entre o dispositivo de borda e o servidor
central. Este trabalho apresenta uma pesquisa aplicada e experimental focada na segu-
ranca deste fluxo. O objetivo principal foi demonstrar a vulnerabilidade de dados sensiveis
(placas de veiculos) transmitidos em texto puro (plain text) e, em seguida, implementar e
validar uma contramedida de seguranca robusta. A metodologia envolveu a construcao de
um protétipo com um Raspberry Pi (borda) e um servidor (backend). Foi executado um
ataque Man-in-the-Middle (MitM) utilizando ARP spoofing (Address Resolution Protocol
spoofing), que comprovou a interceptagao e visualizagao dos dados em texto puro. Como
solugao, foi implementado um esquema de criptografia hibrida, combinando o Advanced
Encryption Standard (AES) para a cifragem dos dados e o algoritmo Rivest-Shamir-
Adleman (RSA) para a troca segura de chaves. A repeti¢do do ataque MitM no sistema
protegido validou a eficacia da solugao, garantindo a confidencialidade e a integridade dos
dados, que se mostraram indecifraveis ao atacante. Adicionalmente, foi demonstrada uma
vulnerabilidade de disponibilidade por meio de um ataque de Negacao de Servigo (Denial
of Service - DoS), que conseguiu saturar os recursos do dispositivo de borda. Conclui-se
que a criptografia hibrida é uma solucao eficaz para a protecdo de dados em transito,
mas que a seguranca em dispositivos de borda requer uma abordagem multifacetada,
considerando também a disponibilidade.

Palavras-chave: Computacao de Borda, Seguranca da Informacao, Internet das Coisas
(IoT), Criptografia Hibrida, Man-in-the-Middle (MitM).






. Experimental Evaluation of Security Techniques in Edge Communication. 55
p. Final Project (Bachelor of Science in Computer Science) — State University of Parana,

Apucarana—PR, 2025.

ABSTRACT

Edge Computing is an emerging paradigm for Internet of Things (IoT) applications,
enabling data processing close to its source, such as License Plate Recognition (LPR) sys-
tems. However, this architecture introduces new security challenges, particularly in the
data flow between the edge device and the central server. This work presents an applied
and experimental study focused on the security of this data flow. The main objective was
to demonstrate the vulnerability of sensitive data (vehicle license plates) transmitted in
plain text and, subsequently, to implement and validate a robust security countermeasure.
The methodology involved the development of a prototype using a Raspberry Pi (edge)
and a server (backend). A Man-in-the-Middle (MitM) attack using Address Resolution
Protocol (ARP) spoofing was executed, confirming the ability to intercept and read the
plain-text data. As a solution, a hybrid cryptography scheme was implemented, combining
Advanced Encryption Standard (AES) for data encryption and Rivest-Shamir-Adleman
(RSA) algorithm for secure key exchange. Repeating the MitM attack on the secured sys-
tem validated the solution’s effectiveness, ensuring data confidentiality and integrity, as
the data remained indecipherable to the attacker. Furthermore, an availability vulnerabil-
ity was demonstrated via a Denial of Service (DoS) attack, which successfully saturated
the edge device’s resources. The results indicate that hybrid cryptography is an effec-
tive solution for protecting data-in-transit, but that security in edge devices requires a
multifaceted approach that also addresses device availability.

Keywords: Edge Computing. Information Security. Internet of Things (IoT). Hybrid
Cryptography. Man-in-the-Middle (MitM).
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1 INTRODUCAO

A tecnologia avanca de forma acelerada, impulsionando a automacao nos mais
diversos setores. O controle de acesso veicular é uma das areas que mais tém se beneficiado
dessas inovagoes [1]. Com a crescente demanda por solugbes inteligentes e eficientes em
ambientes como condominios, empresas e shoppings, a automacao desse processo tornou-
se nao apenas um meio de aumentar a agilidade, mas uma necessidade para garantir a

seguranca e a integridade dos dados envolvidos.

Diante desse cenario, a Computacao de Borda (Edge Computing) surge como uma
solucao eficiente. A sua principal vantagem reside no pré-processamento de informacoes
sensiveis proximo a fonte dos dados, antes do envio para a nuvem, o que minimiza riscos e
reduz significativamente a laténcia [2]. Estudos estimam que uma parcela expressiva dos
dados criados serd processada fora dos data centers centralizados [3], isto é, nas bordas
da rede, oferecendo respostas mais rapidas e maior controle. No entanto, ao passo que
soluciona questoes de desempenho, a arquitetura distribuida da Computagao de Borda
introduz vetores de risco especificos que exigem estratégias de Seguranga da Informacao

adaptadas a este contexto [4].

Com o aumento dos ciberataques que exploram vulnerabilidades em dispositivos
de borda e meios de comunicagao, a seguranca torna-se um tema central. A triade da
seguranga da informagao — Confidencialidade, Integridade e Disponibilidade (CIA) — é
o modelo fundamental para proteger dados em sistemas computacionais [5]. Isso é especi-
almente critico ao lidar com dados sensiveis, como registros de entrada e saida e imagens

capturadas por sistemas de monitoramento.

Nesse contexto, tecnologias como cameras IP e sistemas de reconhecimento de
placas (LPR - License Plate Recognition) [6] geram um grande volume de dados em
tempo real. A abordagem tradicional, que depende do envio integral dessas informacgoes
para a nuvem, enfrenta problemas como congestionamento de rede e atrasos na tomada
de decisdao. Por outro lado, a Computagdo de Borda, embora resolva a laténcia, expande
a superficie de ataque. Dispositivos de borda, frequentemente localizados em ambientes
fisicamente acessiveis, tornam-se alvos de interceptacoes e manipulacoes, comprometendo

a operacao de sistemas criticos e a privacidade dos dados.

A discussao central que impulsiona este projeto é a necessidade de conciliar os be-
neficios operacionais da Computacao de Borda com os requisitos rigorosos de seguranca.
O argumento principal é que a simples migragao do processamento para a borda é in-
suficiente; é essencial que essa migracao seja acompanhada pela implementacao de uma

arquitetura de seguranga especifica para este modelo hibrido (borda-nuvem) [7].
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O problema central abordado neste trabalho é a vulnerabilidade do fluxo de dados
entre dispositivos de borda e servidores centrais, especialmente quando trafegam por redes
locais suscetiveis a interceptagoes. Essa questao torna-se critica no caso de uso adotado por
esta pesquisa: um sistema de controle de acesso veicular, onde a auséncia de mecanismos
de seguranga robustos no transito das informagoes (placas de veiculos) pode comprometer

a confidencialidade e a integridade de todo o sistema.

Este trabalho defende que, por meio da aplicacao de técnicas de criptografia no
fluxo de dados, é possivel mitigar significativamente os riscos associados, construindo um
sistema confiavel e resiliente, capaz de preservar a autenticidade dos dados veiculares

mesmo sob ameaca de interceptacao de trafego.

1.1 Objetivos

As proximas secoes descrevem os objetivos gerais e especificos desse trabalho.

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é avaliar experimentalmente a segurancga do fluxo de
dados em um sistema de Computacao de Borda, demonstrando vulnerabilidades praticas

e validando a eficicia de uma solucao de criptografia hibrida para mitigacao de riscos.

1.1.2 Objetivos Especificos

Para alcancar o objetivo geral, foram definidos os seguintes objetivos especificos:

o Construir um prototipo funcional de controle de acesso veicular utilizando hardware

de baixo custo (Raspberry Pi) como dispositivo de borda;

 Analisar a vulnerabilidade da comunicagao em um cendrio inseguro (HTTP em texto

puro) por meio de interceptagao passiva;

o Implementar uma camada de criptografia hibrida (AES e RSA) para garantir a

confidencialidade e integridade dos dados em transito;

o Avaliar a resiliéncia do dispositivo de borda quanto a disponibilidade, submetendo-o

a ataques de Negagao de Servigo (DoS).

1.2 Organizacao do Trabalho

O restante deste trabalho esta organizado da seguinte forma: O Capitulo 2 apre-
senta a Fundamentacao Tedrica, abordando os conceitos de Computacao em Nuvem,

Borda, Visao Computacional e Seguranca. O Capitulo 3 detalha o Método de Pesquisa e
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a arquitetura proposta. O Capitulo 4 descreve os Experimentos realizados e a configura-
¢ao dos cenarios. O Capitulo 5 apresenta e discute os Resultados obtidos nas anélises de
segurancga. Por fim, o Capitulo 6 traz as Consideragoes Finais e sugestoes para trabalhos

futuros.



2 FUNDAMENTACAO TEORICA

Esta secao aborda os pilares tedricos que fundamentam a presente pesquisa. Serao
abordados os conceitos essenciais de Computacao em Nuvem e sua evolucao para a Com-
putacao de Borda, o contexto dos sistemas automatizados de controle de acesso veicular
junto a visdo computacional, e os principios indispensaveis de Seguranca da Informacao

e Criptografia que norteiam a proposta deste trabalho.

2.1 Computagao em Nuvem e Arquiteturas Distribuidas

A Computagao em Nuvem (Cloud Computing) representa um modelo de entrega
de servigos computacionais pela internet, caracterizado pela elasticidade, escalabilidade e
acesso sob demanda a um conjunto compartilhado de recursos configuraveis, como servi-
dores, armazenamento, aplicacoes e redes. Esse paradigma transformou a infraestrutura
de TT, permitindo que organizag¢oes substituam o alto investimento em hardware local por
um modelo de custo operacional mais flexivel [8]. Os servigos em nuvem sao geralmente
categorizados nos modelos Infraestrutura como Servigo (IaaS), Plataforma como Servigo

(PaaS) e Software como Servigo (SaaS) [9]. A Figura 1 ilustra essa hierarquia.

Figura 1 — Hierarquia dos niveis de controle de cada categoria de computagdo em nuvem

MENOR
SOFTWARE COMO SERVICO
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CONTROLE

INFRAESTRUTURA COMO SERVICO

Iaas Servigos como Backup, Servidores Virtuais,
Armazenamento entre outros

MAIOR

Fonte: Adaptado de [10]

Apesar de sua predominancia, o modelo de nuvem puramente centralizado encontra
desafios em aplicagoes que geram um grande volume de dados e exigem processamento
em tempo real [11]. A laténcia, resultante da distancia fisica entre o local de geragao dos
dados e os data centers da nuvem, pode tornar inviavel a operacao de sistemas criticos que

dependem de respostas em torno de milissegundos, como o controle de acesso veicular.
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Portanto, o envio continuo de dados brutos, como streams de video, para a nuvem
consome uma quantidade significativa de largura de banda [12] e pode gerar custos adi-
cionais em alguns casos (quando se tem um armazenamento em uma nuvem publica, por
exemplo), entao se faz necessaria uma curadoria e uma anélise sobre o tipo e a quantidade
de dados que serao enviados a nuvem, para nao comprometer o fluxo de trabalho de um

sistema.

Contudo, apesar da escalabilidade e flexibilidade oferecidas pela Computagdo em
Nuvem, este modelo centralizado enfrenta limitagoes quando aplicado a cenérios que exi-
gem baixa laténcia e largura de banda otimizada. O envio massivo de dados brutos para
processamento remoto pode gerar gargalos na rede e atrasos inaceitaveis para aplicagoes
de tempo real. E para mitigar essas limitacdes e aproximar o processamento da fonte de

dados que surge o paradigma da Computacao de Borda, detalhado na secao a seguir.

2.2 Computacao de Borda

A Computacao de Borda pode ser vista de duas formas: primeiro, como uma topo-
logia de computacao distribuida projetada especificamente para enderecar as limitagoes
inerentes ao modelo centralizado da Computagdo em Nuvem[13], e segundo, como uma

sub area da Computacdo em Nuvem[14].

Em um cenério onde dispositivos de IoT(Internet of Things), como cameras, sen-
sores e atuadores, geram volumes exponenciais de dados (o que chamamos de Big Data),
a dependéncia exclusiva da nuvem para processamento traz desafios significativos de la-
téncia, consumo de largura de banda e custos operacionais [12]. Entdo, a Computagao de
Borda propoe uma arquitetura descentralizada onde o processamento de dados é deslo-
cado da nuvem central para a “borda” da rede, ou seja, para um ponto mais proximo da

fonte de onde os dados sdo gerados e coletados [15].

Esta subarea traz uma proposta de ideia que se baseia na otimizagao do fluxo de
dados. Segundo Cristino e Caminha [16], ao transferir o processamento de dados para
dispositivos de borda, como gateways ou computadores embarcados, ¢ possivel minimizar
drasticamente a laténcia e possibilitar a tomada de decisoes locais em milissegundos, sem
necessidade de retorno completo a nuvem. Esta proximidade fisica é o que permite uma
certa minimizacao da laténcia, pois as decisoes criticas podem ser tomadas localmente,
sem a necessidade de aguardar o ciclo completo de comunica¢do com a nuvem [16]. A

arquitetura fundamental e os casos de uso deste modelo podem ser visualizados na Figura

2.

E importante frisar que a borda nio visa substituir a nuvem, mas sim estendé-la,
criando um “continuo computacional”, conceito chamado de ECC (Edge-Cloud Conti-

nuum) [18]. A nuvem permanece essencial para tarefas que exigem alto poder de pro-
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Figura 2 — Casos de Uso da Computacao de Borda
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cessamento e armazenamento de longo prazo, como o treinamento de modelos complexos
de Machine Learning e a realizacao de analises de Big Data. Nesse modelo hibrido, os
dispositivos de borda atuam como uma primeira camada inteligente, realizando tarefas de
pré-processamento, filtragem e coleta de dados; essas a¢oes acabam tornando-se insumos
eficientes para as tarefas que serao feitas na nuvem, beneficiando também modelos de

inteligéncia artificial [19].

Essa arquitetura resulta em beneficios operacionais claros. Primeiramente, ha uma
otimizacao massiva do uso da largura de banda, pois o trafego de dados desnecessarios
ou redundantes pela rede é eliminado. Em segundo lugar, a eficiéncia geral do sistema
aumenta, ja que a nuvem ¢ liberada de tarefas de processamento de baixo nivel. Por fim,
um dos beneficios mais vantajosos é a capacidade de operacao autonoma. Em caso de
falha na conexao com a internet ou instabilidade na comunica¢do com a nuvem, o sistema
na borda pode continuar operando suas fungoes essenciais, garantindo a resiliéncia e a
disponibilidade do servigo. Esta resiliéncia é valida para as outras areas das arquitetu-
ras distribuidas que funcionam também como uma extensao da Cloud Computing, tais
como a Fog Computing (Computacao de Névoa) e a Mist Computing (Computagao de
Bruma) [20]. A Figura 3 demonstra esta abstragdo das extensoes da nuvem, ilustrando
como as camadas de processamento se distribuem desde o dispositivo final até o servidor

central.
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Figura 3 — Arquitetura IoT com Mist, Fog e Cloud Computing
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2.3 Aplicagoes da Computacao de Borda em Visao Computaci-

onal

A Visao Computacional é uma area da ciéncia da computagao e da inteligéncia
artificial que visa capacitar os computadores a “ver”, interpretar e compreender o mundo
visual [21, 22]. De forma andloga & visdao humana, ela utiliza dados de entrada, como
imagens e videos, para extrair, processar, analisar e entender informagoes, permitindo
que uma maquina tome decisoes ou execute agoes baseadas nessa compreensao. Esta area
da computagdao nao se limita a simplesmente replicar a captura de imagens, mas envolve
uma série complexa de tarefas para extrair significado e contexto do contetudo visual,

como detecgao de objetos, segmentacao, rastreamento e reconhecimento de padroes [22].

O desenvolvimento desta area foi acelerado pelos avangos em Machine Learning
(Aprendizado de Maquina) e, mais especificamente, em Deep Learning (Aprendizado Pro-
fundo) [23, 24]. Modelos como as Redes Neurais Convolucionais (CNNs) tornaram-se o
estado da arte para tarefas de reconhecimento de imagem, superando métodos tradicio-
nais em precisao e robustez [23, 6, 24, 21]. A aplicacao especifica de LPR (License Plate
Recognition), que é fundamental para o dominio de aplicagao deste trabalho, é um exem-
plo classico de um pipeline de Visao Computacional [23, 6]. Esse processo geralmente
envolve miltiplas etapas: 1) Aquisi¢do da Imagem (captura pela camera); 2) Detecgao de
Objetos (localizagao da placa do veiculo dentro do enquadramento da imagem); 3) Seg-
mentagao (isolamento da placa do restante da cena); e 4) Reconhecimento, onde técnicas
de Reconhecimento Optico de Caracteres (OCR) séao aplicadas para converter os pixels

dos caracteres da placa em texto digital [6, 23]. A Figura 4 demonstra esse reconhecimento
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de caracteres.

Figura 4 — Etapas do processamento de imagem feito pelo OCR
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O sucesso e a alta precisao desses modelos de Deep Learning, no entanto, vém
acompanhados de uma demanda computacional significativa, especialmente durante o
processo de inferéncia (a aplicacdo do modelo treinado em dados novos) [23, 6]. Essa alta
carga computacional é um dos principais fatores que impulsionam a ado¢ao da Computa-
¢ao de Borda [23, 25]. Enviar um fluxo de video continuo e de alta definigdo para a nuvem
para realizar a analise LPR é, em muitos casos, inviavel devido a trés fatores principais:
os custos de largura de banda, a laténcia inaceitavel para uma aplicacdo em tempo real

(como a abertura de uma cancela) [25, 23, 26] e os riscos de privacidade.

Ao processar o video localmente na borda, evita-se a transmissao de dados brutos
e sensiveis, como o fluxo de video completo, que pode conter imagens dos ocupantes do
veiculo ou do entorno, minimizando a exposicao desses dados a interceptacoes. Torna-
se, portanto, muito mais eficiente e seguro executar a inferéncia do modelo de Visao
Computacional diretamente no dispositivo de borda, como o Raspberry Pi, processando

o video localmente e em tempo real 23, 25, 26, 27].



31

2.4 Conteinerizacao

No desenvolvimento de sistemas distribuidos modernos, especialmente em arqui-
teturas de borda, a forma como as aplicagdes sao empacotadas e implantadas é um fator
importante a ser considerado, tanto para a sustentacao quanto para a manutencao e se-
guranga do projeto. A conteinerizagdo, popularizada por tecnologias como o Docker [28],
Podman [29] e Kubernetes [30], surge como uma solugdo de virtualizagdo em nivel de

sistema operacional que oferece uma resposta eficaz a esses desafios.

O estudo de Casella [31] demonstra que, diferentemente das maquinas virtuais tra-
dicionais (VMs), que dependem de um hipervisor — uma camada de software que emula
o hardware fisico (CPU, meméria e disco) para executar um sistema operacional “convi-
dado” (Guest OS) completo —, os contéineres sao muito mais leves. Uma VM consome
quantidades significativas de recursos e resulta em tempos de inicializagdo mais longos,
pois precisa carregar um sistema operacional inteiro. Em contrapartida, um contéiner
compartilha o kernel do sistema operacional do hospedeiro (Host OS), encapsulando ape-
nas a aplicac¢do e suas dependéncias (bibliotecas, bins e arquivos de configuragao) em um
ambiente isolado [28]. Para melhor entendimento, é comum comparar a arquitetura de

contéineres com a de Maquinas Virtuais (VMs), como ilustrado na Figura 5.

Figura 5 — Comparagao de uma arquitetura Tradicional com a de uma VM e de um Con-
téiner
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Fonte: Adaptado de [30]

A adocao desta abordagem traz um conjunto de beneficios fundamentais para a
implantacao em dispositivos de borda. A portabilidade é um dos principais, pois a aplica-
¢ao e suas dependéncias sdo empacotadas em uma imagem imutavel [28]. Isso garante que
o ambiente de execucao seja idéntico e reprodutivel, eliminando conflitos de dependéncia,
seja em um servidor de desenvolvimento ou no dispositivo de borda (como o Raspberry
Pi). Aliada a isso, a leveza [31] é uma caracteristica essencial para hardware com recur-
sos computacionais e memoéria limitados. Como os contéineres compartilham o kernel do
hospedeiro e nao carregam o overhead de um sistema operacional completo, eles iniciam

em segundos e permitem uma maior densidade de servigos no mesmo dispositivo.
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Por fim, a seguranga é uma caracteristica frequentemente discutida. Um contéiner
executa o processo da aplicagdo em um sandboxr (ambiente isolado), com seu préprio
sistema de arquivos e pilha de rede. Segundo Alencar [28], o Docker possui recursos
avangados de seguranga. Porém, outros estudos, como o de Casella [31] e o de Miers et
al. [32], demonstram que uma de suas principais fragilidades estd na execucao do daemon
com privilégios administrativos, o que pode deixar brechas para modificagoes indevidas
em arquivos restritos. Em suma, diante dos fatos apresentados, faz-se necessaria uma
analise cuidadosa das configuragoes dos arquivos e do ambiente em que os contéineres

Docker forem implementados para garantir um ambiente seguro.

2.5 Seguranca da Informacao em Ambientes Distribuidos

Segundo Nascimento e Costa [33] e Ferreira [34], a seguranca da informagcao visa
proteger os dados e sistemas para garantir a continuidade do negdcio, sustentando-se so-
bre a triade de confidencialidade, integridade e disponibilidade (CIA) [5]. Neste trabalho,
a Confidencialidade garante que os dados de placas e imagens dos veiculos sejam ina-
cessiveis a pessoas nao autorizadas. A Integridade assegura que esses dados nao possam
ser alterados maliciosamente em transito, por exemplo, trocando uma placa autorizada
por uma nao autorizada. A Disponibilidade garante que o sistema de controle de acesso

funcione ininterruptamente.

A arquitetura de borda, embora benéfica, introduz vetores de ataque especificos. O
dispositivo de borda pode ser alvo de acesso fisico nao autorizado, ataques de negacgao de
servigo (DoS) [35] na rede local e ataques Man-in-the-Middle (MitM) [36] para interceptar
a comunicacao entre a borda e a nuvem. Nesse caso, uma estratégia de seguranca robusta,
que va além da protecao do perimetro da nuvem e inclua o fortalecimento dos dispositivos

de borda, ¢é indispensavel.

Uma das principais ferramentas para garantir essa seguranca é a criptografia, que
¢ a ciéncia e a arte de escrever mensagens em forma codificada [26]. No contexto da
Computacao de Borda, a aplicacao de técnicas criptograficas robustas é essencial para

proteger o fluxo de dados em transito contra interceptacoes.

Historicamente, a criptografia pode ser classificada em duas categorias principais:

e Criptografia Simétrica: Utiliza uma tnica chave secreta compartilhada entre
as partes. Algoritmos como o AES (Advanced Encryption Standard), citado por
Queiroz [25], sao o padrao da industria devido a sua extrema velocidade e eficiéncia
computacional, sendo ideais para cifrar grandes volumes de dados. Seu principal

desafio é o problema da distribuicao segura da chave, que pode apresentar problemas
de escalabilidade [26].
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« Criptografia Assimétrica: Utiliza um par de chaves (publica e privada). Dados
criptografados com a chave publica s6 podem ser descriptografados com a chave pri-
vada correspondente. Algoritmos como o RSA (Rivest-Shamir-Adleman) e aqueles
baseados em curvas elipticas (ECDH, ECDSA) sao usados para estabelecer auten-
ticidade e troca segura de informagoes [25]. Sua desvantagem é ser computacional-
mente intensiva e mais lenta, o que a torna inviavel para criptografar todo o volume

de dados de uma comunicacao [26].

Para mitigar as desvantagens de cada abordagem, a solucao padrao da industria é
a criptografia hibrida, que combina a seguranga da criptografia assimétrica para a troca
de chaves com a velocidade da criptografia simétrica para a protecao dos dados. O mo-
delo envolve o uso da criptografia assimétrica apenas no inicio para negociar uma chave
de sessao temporaria (simétrica). Uma vez estabelecida, a comunicagido passa a usar a
criptografia simétrica, muito mais rapida. Este é o principio fundamental de protocolos

como o TLS (Transport Layer Security) [26].

Além da confidencialidade, a criptografia fornece mecanismos para a integridade
e autenticidade através de fungdes de hash criptografico (como SHA-256), que criam
uma “impressao digital” tnica dos dados. Qualquer alteracao resultara, com altissima
probabilidade, em um hash diferente, permitindo a verificacao da integridade [26]. Ao
combinar hashing com criptografia assimétrica, criam-se assinaturas digitais, que provam
inequivocamente que a mensagem veio do remetente esperado (autenticidade) e nao foi
alterada (integridade) [25]. Em uma arquitetura de borda, a aplicacdo correta desses

conceitos é um requisito fundamental para proteger o fluxo de dados.

2.6 Trabalhos Relacionados

Nesta secao, sao apresentados trabalhos que abordam a Computacao de Borda
em conjunto com aspectos de seguranca, desempenho ou arquitetura para ambientes de
IoT, contextualizando a pesquisa e destacando suas contribuigoes especificas. Na tabela
1 foram feitas as comparagoes entre os trabalhos relacionados, abordando as informagoes

chaves de cada trabalho.

A crescente necessidade de processar dados mais perto de sua origem, impulsionada
por requisitos de baixa laténcia, economia de banda e maior autonomia, consolidou a
Computacao de Borda como um paradigma relevante. No entanto, essa descentralizacao
introduz novos desafios de seguranca, especialmente no fluxo de dados entre a borda e

outros sistemas, como servidores centralizados ou em nuvem.

Cesar [37] propoe uma arquitetura de controle de acesso para IoT utilizando Com-
putagao de Borda com o objetivo principal de melhorar a disponibilidade dos servicos.

O trabalho utiliza a borda para descentralizar a arquitetura e otimizar a troca de dados



34

Tabela 1 — Tabela comparativa dos trabalhos relacionados

Ref. ACB FPS FCI FDD UCF ICH AAM Ferramentas
Cesar (2022) V v v Controle
de Acesso,
GraphQL,
JWT
Silvério & v v v Filtragem
Guardia de Kernel,
(2021) Raspberry
Pi, Energia
Kraus v v Desempenho
(2021) 5G, Laténcia
Negri (2025) v v Vulnerabs.
Echo, Au-
tenticacao
SMS/Hash
Schenfeld v v v v Arquitetura
(2017) Hibrida,
TLS/DTLS
Trabalho v v v v v Criptografia
Proposto Hibrida, De-
fesa MitM

Legenda: ACB = Aplica Computagao de Borda; FPS = Foco Principal em Seguranca; FCI = Foco em
Confidencialidade/Integridade; FDD = Foco em Disponibilidade/Desempenho; UCF = Usa Criptografia
no Fluxo; ICH = Implementa Criptografia Hibrida; AAM = Aborda Ataque MitM.

com GraphQL, mitigando a sobrecarga em um ponto central. A seguranca é abordada
sob a perspectiva de controle de acesso baseado em politicas e contexto , utilizando au-
tenticacao via JWT. Embora utilize a borda e tenha um componente de segurancga, difere
deste trabalho por focar na disponibilidade e no controle de acesso, enquanto neste traba-
lho concentra-se na confidencialidade e integridade dos dados em transito contra ataques

MitM por meio de criptografia hibrida.

Silverio e Guardia [38] focam diretamente no conceito de “Edge Security”, investi-
gando a filtragem de pacotes na borda da rede. O trabalho compara diferentes mecanismos
de filtragem disponiveis no kernel Linux (iptables, nftables, BPF, XDP) implementados
em um dispositivo de borda (Raspberry Pi) , analisando o impacto no consumo de energia
e na carga da CPU. A motivagao é processar/descartar pacotes maliciosos o mais cedo
possivel | considerando as restri¢goes de dispositivos de borda. Assim como neste trabalho,

aplica a seguranca diretamente na borda, mas a abordagem ¢é diferente: filtragem base-
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ada em regras para bloquear trafego versus criptografia para proteger o contetido contra

interceptacao e adulteragao (MitM).

Kraus [39] explora a aplicagdo da Computagao de Borda habilitada por redes 5G
para aplicacoes industriais que exigem laténcia ultrabaixa e alta confiabilidade. Utilizando
simulagao com FreebGC e UERANSIM , o trabalho quantifica a redugao de laténcia ao
acessar uma rede de dados local (Borda) em comparacao com uma rede remota (Data Cen-
ter) , utilizando mecanismos como UL CL para direcionamento de trafego. A seguranga
nao é o foco principal da analise. Este trabalho é relevante por demonstrar experimen-
talmente um dos principais motivadores da Computagao de Borda (reducao de laténcia),

cenario no qual a seguranca do fluxo de dados, que é o foco deste TCC, torna-se crucial.

Negri [40] investiga vulnerabilidades em dispositivos IoT de borda, especificamente
os Amazon Echo (com Alexa). O estudo discute diversas ameagas, incluindo ataques MitM
, e implementa um proof-of-concept de autenticagdo de usuario via SMS (Short Message
Service), utilizando uma skill da Alexa e armazenamento seguro de credenciais (hashes
SHA-256) no backend. Embora aborde a seguranca em um dispositivo de borda popular
e mencione MitM, o foco difere deste TCC, pois se concentra na autenticacao do usuario
e analise geral de vulnerabilidades, em vez de proteger especificamente o fluxo de dados

em transito com criptografia contra interceptagao/adulteragao.

Schenfeld [41] apresenta uma arquitetura hibrida Fog/Edge Computing para 10T,
visando reduzir laténcia e dependéncia da nuvem. A arquitetura define uma camada
“Edge” nos préprios dispositivos e uma camada “Fog” em gateways (SoCs). Um aspecto
relevante é a inclusdo explicita de seguranca na comunicagao entre as camadas (FEdge-Fog
e Fog-Cloud) por meio dos protocolos TLS/DTLS. Esse trabalho se aproxima deste TCC
por implementar seguranga para dados em transito em uma arquitetura de borda/névoa.
Contudo, utiliza os protocolos padrao TLS/DTLS. Embora estes também operem com
criptografia hibrida, a proposta deste trabalho se distingue pela implementagao dedicada
e controlada dos algoritmos AES e RSA, visando demonstrar experimentalmente a efica-
cia mecanica dessa defesa contra ataques MitM em um cenério de borda, permitindo uma

andlise detalhada do fluxo cifrado.

Em suma, os trabalhos relacionados demonstram a relevancia da Computacao de
Borda para IoT, seja por beneficios de desempenho (laténcia, disponibilidade) ou como
ponto estratégico para aplicacdo de seguranga (controle de acesso, filtragem, autentica-
¢ao). Este trabalho contribui para esta area ao focar especificamente na vulnerabilidade
do fluxo de dados Borda-Servidor a ataques Man-in-the-Middle e ao implementar e vali-
dar a eficdcia da criptografia hibrida (AES4+RSA) como solucao prética para garantir a

confidencialidade e a integridade de dados sensiveis neste contexto.



3 METODO DE PESQUISA

Este capitulo detalha a metodologia empregada para o desenvolvimento pratico da
pesquisa deste trabalho. A pesquisa é classificada como aplicada, pois visa a concepcao e
implementagao de uma solugao tecnoldgica para um problema pratico, a vulnerabilidade
de dados sensiveis em transito em sistemas de borda, e experimental, pois envolveu a
constru¢ao de um prototipo funcional em um ambiente de laboratorio controlado, onde
variaveis foram manipuladas para simular ameacas reais e validar a eficacia da contrame-

dida de seguranca proposta.

Os objetivos praticos deste método foram estruturados para responder a questao
de pesquisa: construir um prototipo de borda capaz de realizar o reconhecimento de
placas, analisar sua vulnerabilidade em um cenario padrao, implementar uma camada de
criptografia hibrida robusta e, por fim, validar a solugao por meio da simulagao controlada
de ataques MitM e DoS.

3.1 Arquitetura e Ambiente Experimental

Para a realizagao dos experimentos, foi configurada uma infraestrutura de rede
local (LAN) composta por trés componentes de hardware principais, simulando um ecos-

sistema de Computagdo de Borda e a presenca de um agente malicioso.

» Dispositivo de Borda: Foi utilizado um Raspberry Pi 4 Model B (4 GB de RAM),
operando com o sistema Raspberry Pi OS Lite (64 bits) em modo headless (sem
interface grafica), com o objetivo de otimizar o uso de recursos. Este dispositivo,
equipado com uma webcam USB, tinha a funcdo de capturar o video, executar o

processamento de LPR localmente e enviar os dados da placa ao servidor.

« Servidor Central (Cloud/Backend): Um Desktop PC (Intel i5, 8GB RAM),
executando o sistema Ubuntu Server representou o ambiente de backend do sistema.
Este servidor hospedou a API de validacao e a base de dados de veiculos autori-
zados, com a aplicacao sendo gerenciada via Docker para garantir portabilidade e

isolamento.

« Estacao do Atacante: Um notebook com Arch Linux foi posicionado na mesma
rede, destinado a execugao das ferramentas de anélise de trafego e a realizacao dos

ataques de interceptacao e negacao de servigo.

A topologia de rede consistiu em conectar os trés dispositivos (borda, servidor

e atacante) via cabo a um mesmo switch de rede. A Figura 6 demonstra a topologia



37

montada para o experimento.

Figura 6 — Topologia de rede montada para o experimento

Switch LAN (Rede Local)

Dispositivo de Borda (Raspberry Pi) Laptop (Arch Linux) - Atacante Servidor (Ubuntu Server)- UNESPAR

Fonte: Imagem do Autor

A opcgao pela utilizacao exclusiva de uma rede cabeada (Ethernet), em detrimento
de uma rede sem fio (WLAN), deu-se por razoes de estabilidade e controle do ambiente
experimental. Anteriormente, foram realizados testes com interfaces de rede sem fio no
servidor, porém foram observadas instabilidades criticas no subsistema de rede do sistema
operacional Ubuntu Server. Tais falhas ocasionaram conflitos de roteamento e erros re-
correntes durante tentativas de conexao SSH na mesma sub-rede, o que desencadeou um

comportamento anormal no servigo de logging do sistema (processo systemd-journald).

Esse erro gerou uma “tempestade de logs” (log storm) que consumiu rapidamente
o armazenamento em disco do servidor, comprometendo a execucao dos contéineres e a
validade dos testes. Portanto, para isolar variaveis de instabilidade de infraestrutura e
focar exclusivamente na validacao dos protocolos de seguranca e criptografia propostos,
adotou-se a topologia cabeada via switch, garantindo um canal de comunicagao estavel e

previsivel para a simulagao dos ataques.

O desenvolvimento deste trabalho foi dividido em quatro etapas principais, conce-
bidas para seguir um fluxo légico desde a concepcgao até a validagao final dos resultados.
Para facilitar a compreensao do roteiro metodolégico adotado, a Figura 7 apresenta visu-

almente a sequéncia das etapas percorridas.

Conforme ilustrado na Figura 7, a primeira etapa consistiu na definicao do am-
biente e dos requisitos, incluindo a montagem da infraestrutura de hardware (Raspberry
Pi, servidor e maquina atacante) e a configuragao da topologia de rede e a defini¢ao dos
parametros de configuracao. Os requisitos definidos foram: analise e processamento da
placa do veiculo na borda, comunicacdo constante e eficiente com o servidor, e garantia

de confidencialidade e integridade dos dados.
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Figura 7 — Fluxograma das etapas do desenvolvimento da pesquisa
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A segunda etapa foi a implementacao do protétipo, na qual os componentes de
software foram desenvolvidos. Isso incluiu a refatoracao e adaptacdo do coédigo LPR de
um projeto de cdédigo aberto para uma biblioteca, o desenvolvimento do codigo do cliente
de borda em Python com sua légica de captura (usando OpenCV), e a criagao do servidor
de API em Flask e sua conteinerizacao com Docker, além da integracao da criptografia
hibrida.

A terceira etapa compreendeu a simulacao e execucao dos testes, onde foram pla-
nejados trés cendrios distintos para avaliar o sistema: um teste de interceptacao (MitM)
em trafego inseguro (texto puro), um teste de interceptagao em trafego seguro (com crip-

tografia hibrida), e um teste de ataque DoS contra o dispositivo de borda.

Por fim, a quarta etapa envolveu a analise de resultados e validagao. Nesta fase,
os dados coletados foram examinados para verificar se os objetivos de seguranca foram
atingidos, validando especificamente as métricas de Confidencialidade, Integridade e Dis-

ponibilidade do sistema.

3.2 Implementacao da Mitigacao de Seguranca

Para solucionar a vulnerabilidade de interceptacao de dados, o método escolhido
foi a implementacdo de um esquema de criptografia hibrida, combinando a velocidade
do AES (simétrico) com a seguranca do RSA (assimétrico) para a troca de chaves. O

procedimento de comunicagao segura foi definido da seguinte forma:

« Preparacgao: Um par de chaves RSA (2048 bits) é gerado. A chave privada é arma-

zenada com seguranca no servidor (dentro do contéiner Docker), e a chave publica é
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transferida para o cliente Raspberry Pi utilizando o protocolo de rede SCP(Secure
Copy Protocol) durante a fase de provisionamento do ambiente, garantindo que o

dispositivo possua a credencial necesséaria antes do inicio da execucao..

« Requisigao (Cliente): Ao capturar uma placa, o cliente gera uma chave de sessao
AES (128 bits) de uso tnico. Em seguida, criptografa o dado principal (JSON da
placa) com essa chave AES e protege a prépria chave AES utilizando a chave piblica

RSA do servidor. Ambos os dados cifrados sao enviados ao servidor.

» Processamento (Servidor): O servidor utiliza sua chave privada RSA para des-
criptografar a chave de sessao AES. Com a chave AES em maos, ele descriptografa

o JSON da placa e realiza a validagao.

« Resposta (Servidor): O servidor reutiliza a mesma chave de sessdio AES para

criptografar a resposta do acesso (autorizado/negado) e a envia de volta ao cliente.

« Validagao (Cliente): O cliente usa sua chave AES original (ainda em memoria)

para descriptografar a resposta e confirmar a autorizacao.

Considerando um vetor de ataque restrito a interceptagao e adulteracao de trafego
de rede, a solucao garante a protecao dos dados. Em conformidade com o principio de
Kerckhoffs [42], a seguranga do sistema independe do segredo sobre o algoritmo utilizado.
Dessa forma, um atacante s6 obteria éxito na decifragem do contetido caso fosse capaz
de violar a seguranca matematica dos protocolos RSA (2048 bits) e AES (128 bits) ou

comprometer a chave privada armazenada no servidor.

3.3 Meétricas e Critérios de Avaliacao

Para avaliar a seguranca da arquitetura, foram planejados trés cenarios de teste,
utilizando ferramentas especificas para simular ameagas. As ferramentas de andlise sele-
cionadas foram o Wireshark [43] e o tshark [44], utilizadas para a captura e inspegao
detalhada de pacotes de rede. Para a simulacao dos ataques, empregaram-se as ferramen-
tas hping3 [45], para gerar o ataque DoS do tipo SYN Flood, e a ferramenta arpspoof [46]
(do pacote dsniff [47]), para realizar o envenenamento de cache ARP, etapa fundamental

para a execucao do ataque Man-in-the-Middle.

O plano de testes, cujos resultados serao apresentados no Capitulo 4, foi dividido

nos seguintes cenarios:

e Cenario 1 — Teste de Vulnerabilidade: consistiu na execucao do sistema sem cripto-

grafia, a fim de verificar a visibilidade dos dados (placa) em texto puro;
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o Cenario 2 — Teste de Validacao da Solucao: repetiu o mesmo ataque MitM contra o

sistema protegido com criptografia hibrida, buscando validar a confidencialidade e

a integridade dos dados;

Cenario 3 — Teste de Disponibilidade: concentrou-se na execucao de um ataque DoS
com o hping3, direcionado ao dispositivo de borda, avaliando o impacto desse ataque

sobre a sua operagao.

A avaliacao dos resultados foi conduzida de forma qualitativa e comparativa, con-

trastando o comportamento do sistema e a natureza dos pacotes capturados em cada

cenario. Os critérios de avaliagao foram fundamentados nos pilares da seguranca da infor-

magcao:

« Confidencialidade: Avaliada pela verificacao da legibilidade dos dados interceptados.

O critério de sucesso para a solugao é que os dados trafegados sejam ininteligiveis

para o atacante;

Integridade: Avaliada pela capacidade de detectar adulteracoes. O critério de sucesso
¢é que qualquer modificacao no pacote cifrado resulte em falha na descriptografia,

impedindo a injecao de dados falsos;

Disponibilidade: Avaliada pela observacao do impacto do ataque de negacao de
servigo sobre a operacao do dispositivo de borda, medindo a saturacao de recursos

(CPU) e a interrupgao do servigo de comunicagao.

Essas métricas permitiram comprovar experimentalmente se a criptografia hibrida

adotada era suficiente para garantir a confidencialidade e integridade dos dados em tran-

sito, bem como identificar vulnerabilidades adicionais relacionadas a disponibilidade.

3.4 Uso de Ferramentas de Inteligéncia Artificial

Este trabalho contou com o apoio de ferramentas de Inteligéncia Artificial genera-

tiva (Gemini, modelo 2.5, do Google), utilizadas para revisao linguistica sob supervisao e

validagao do autor.
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4 EXPERIMENTOS

Este capitulo documenta a execugao dos testes praticos descritos na metodologia
de pesquisa. O foco é apresentar os trés cenarios experimentais que foram projetados para
avaliar a arquitetura do sistema. Cada cenario foi elaborado para testar um aspecto es-
pecifico da seguranca: a operacao normal e sua vulnerabilidade inerente, a capacidade de
um atacante interceptar e adulterar os dados (Ataque Man-in-the-Middle), e a resiliéncia
do dispositivo de borda a ataques de disponibilidade (Negagao de Servigo). Os resulta-
dos detalhados, capturas de tela e evidéncias de cada experimento serao apresentados e

analisados no Capitulo 5.

4.1 Configuracao do Ambiente Experimental

A primeira etapa da execucao consistiu na montagem e validagdo do ambiente de
testes. A Figura 8 ilustra a estrutura de arquivos utilizada no servidor de API, conteine-
rizado por meio do Docker.

Figura 8 — Arquivos utilizados no ambiente do Servidor

» Documents UNESPAR 1ide servidor-api

C

chave_privada. Dockerfile placas_ requirements. servidor.py
pem cadastradas. txt
json

Fonte: Imagem do Autor

Os componentes essenciais do ambiente de servidor sao:

» servidor.py: Script principal da aplicacao, escrito em Python utilizando o micro-
framework Flask. Este arquivo é o responsavel por criar a API de validacao, escutar
requisicoes HT'TP, receber os dados da placa e verificar sua existéncia no arquivo

placas_cadastradas. json para retornar a autorizagao.

o Dockerfile: Arquivo de receita para a conteinerizacao da aplicacdo. Automatiza a

instalacao do sistema operacional base e das dependéncias listadas em requirements.

garantindo um ambiente isolado e reprodutivel.

e placas_cadastradas. json: Arquivo JSON que simula uma base de dados NoSQL,

contendo a lista de placas autorizadas.

txt,
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» requirements.txt: Lista as bibliotecas Python necessérias, incluindo Flask (para
a API) e pycryptodome (para as operagoes criptograficas).

e chave_privada.pem: Componente critico de seguranga, a chave privada RSA de
2048 bits, mantida em segredo no servidor para descriptografar a chave de sessao
AES.

A Figura 9 mostra a estrutura de arquivos montada para o ambiente do dispositivo
de borda (Raspberry Pi).

Figura 9 — Arquivos utilizados no ambiente do Raspberry Pi

« /home/luka/Documentos/UNESPAR/TCC/cliente-borda/

o

1lpr_1lib chave_publica. cliente_borda. requirements.
pem py txt

Fonte: Imagem do Autor

Os componentes do ambiente de borda sao:

e cliente_borda.py: Script principal que orquestra a légica de borda. Utiliza OpenCV
para captura de video, aciona a biblioteca 1pr_1ib para processamento e requests

para comunicacao com o servidor.

e chave_publica.pem: Chave publica RSA correspondente a chave privada do servi-

dor, usada para criptografar a chave de sessdo AES antes do envio.

e requirements.txt: Define as bibliotecas do cliente, incluindo opencv-python, requests,

pycryptodome e matplotlib.

o lpr_lib (Pasta): Biblioteca modular resultante da refatoracao do cédigo LPR, per-
mitindo a importacao da fungdo "extrair_placa_do_frame()" pelo script princi-

pal.

4.2 Cenério 1: Fluxo de Dados Basico (Inseguro)
O primeiro cenario estabeleceu a base funcional do sistema, representando a co-
munica¢ao em seu estado mais simples e inseguro.

Como ilustrado na Figura 10, este cenario corresponde ao modelo de arquitetura

fundamental do projeto. O dispositivo de borda (Guarita + Raspberry Pi + Camera)
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Figura 10 — Tréafego inseguro entre a Borda e o Servidor

(23
= - @ T

[=—x]
=
[c—0]

ﬂ-‘l _ N

Guarita + Raspberry Pi + CAmera
UNESPAR
E+@ou@

Fonte: Imagem do Autor

Servidor - UNESPAR

executa o processamento local de LPR para identificar uma placa de veiculo (ex: “ABC-
123”). Apés a extragdo, o texto da placa é enviado pela rede LAN para o servidor. O
servidor verifica na base de dados se a placa estda cadastrada e retorna uma resposta
de autorizagao (Aprovado ou Negado). Neste cenério, ndo hé aplicacao de criptografia,

servindo como linha de base para a analise de vulnerabilidade.

4.3 Cenario 2: Demonstracao da Vulnerabilidade (MitM em Tra-

fego Inseguro e Seguro)

O segundo cenario introduziu um “Atacante” na mesma rede local para simular
o ataque MitM e testar a eficacia da criptografia hibrida implementada. O diagrama do

ataque é apresentado na Figura 11.

Figura 11 — Diagrama demonstrando o ataque MitM

Q
@ 7 roome O

Servidor - UNESPAR

Guarita + Raspberry Pi + Camera

UNESPAR "‘\
)+@ou@

Fonte: Imagem do Autor

Utilizando a técnica de ARP Spoofing, a maquina do atacante foi posicionada
logicamente entre o dispositivo de borda e o servidor, desviando todo o fluxo de trafego.
E fundamental destacar que, neste experimento, o ARP Spoofing foi utilizado estritamente
como método de interceptacao para viabilizar o ataque do tipo passivo, conhecido como

eavesdropping. Dessa forma, o atacante limitou-se a capturar e analisar os pacotes em
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transito para verificar a exposicdo dos dados, sem realizar injecdo ou alteracao ativa de

pacotes durante a captura. Este experimento foi dividido em duas fases:

1. Teste de Vulnerabilidade: O ataque MitM foi executado contra o fluxo de dados
inseguro do Cenario 1. A hipdtese era que o atacante conseguiria violar a confiden-
cialidade (lendo os dados em texto puro) e a integridade (tendo a capacidade de

adulterar os dados).

2. Teste de Validagdo: O mesmo ataque MitM foi repetido contra o sistema com a
criptografia hibrida (AES+RSA) ativada. A hip6tese era que a solugao se mostraria
eficaz, tornando os dados interceptados cifrados e indecifraveis, impedindo a leitura

e a adulteracao.

4.4 Cenario 3: Teste de Disponibilidade (Ataque DoS)

O terceiro cenario avaliou um vetor de ataque distinto, focado na disponibilidade
do hardware de borda. O ataque MitM posiciona o atacante na rede, permitindo nao

apenas a interceptagao, mas também ataques de negacao de servigo.

Figura 12 — Diagrama demonstrando o Ataque DoS do tipo SYN Flood

& o =
8+ 2=@) %

Dispositivo de Borda (Raspberry Pi) Atacante Servidor (Ubuntu Server) - UNESPAR

Fonte: Imagem do Autor

Como demonstrado na Figura 12, este experimento investigou se um atacante
na mesma rede poderia paralisar a operagao do dispositivo de borda. A hipotese é que
o Raspberry Pi, por ser um hardware de recursos limitados, é suscetivel a ataques de
inundacao de rede, como um SYN Flood. O atacante direcionou um alto volume de pacotes
maliciosos ao [P do Raspberry Pi com o objetivo de saturar seus recursos de CPU e rede,
impedindo a execucao de suas tarefas essenciais. O “X” vermelho no diagrama simboliza

a falha do dispositivo e a interrupc¢ao do servigo.
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5 RESULTADOS

Este capitulo apresenta os resultados e as evidéncias praticas coletadas durante a
execucao dos cenarios definidos no Capitulo 4, documentando as observacoes e analisando

os dados a luz das métricas de seguranca.

5.1 Resultados do Cenario 1: Trafego Inseguro (Man-in-theMiddle)

Nesta fase, o sistema foi executado sem criptografia. A Figura 13 mostra o proces-

samento local bem-sucedido da placa “BRA2E19” pelo Raspberry Pi.

Figura 13 — Placa analisada e processada pelo Raspberry Pi
Processo de Detecc¢ao da Placa: BRA2E19

1. Imagem Original 2. Imagem Processada (Limiar)
il q

BRAZ2E19)]

pogves o 1 ]
3. Placa Recortada 4. Recorte p/ OCR

BRA2E19

Fonte: Imagem do Autor

Em seguida, na Figura 14 apresenta a evidéncia crucial capturada pelo Wireshark.
Como pode ser observado, o trafego inseguro expoe o pacote HI'TP POST com o payload
JSON (“placa”: “BRA2E19”) em texto puro. Esta captura comprova uma falha critica de
confidencialidade, permitindo que qualquer pessoa na rede leia os dados sensiveis. Embora
a agao realizada tenha sido apenas de escuta passiva (eavesdropping), a exposi¢ao em texto
claro confirma que nao existem barreiras técnicas impedindo a perda de integridade, pois
um atacante que pode ler este formato pode facilmente replica-lo ou adultera-lo, como

explorado na metodologia.
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Figura 14 — Placa Interceptada no Wireshark

Wireshark - Packet 103 - Trafego DESCRIPTOGRAFADO na LAN.pcapng

p Hypertext Transfer Protocol

w JavaScript Object Notation: application/json

w Object
w Member: placa
[Path with value: /placa:BRA2E19]
[Member with value: placa:BRA2E19]
String value: BRA2E19
Key: placa

[Path: /placa]

Ad
HD@ @ s
UA R
9-aA
J{"plac a": "BRA
2E19"}

Fonte: Imagem do Autor

5.2 Resultados do Cenério 2: Trafego Seguro (Validagao da Crip-
tografia Hibrida)

Este experimento validou a solucao de criptografia hibrida sob as mesmas condigoes
de ataque MitM descritas no Cenario 2. Primeiro, para evidenciar a execugao do ataque
MitM, foram utilizados dois comandos arpspoof em terminais separados na maquina do
atacante. A Figura 15 documenta o envenenamento da tabela ARP do Raspberry Pi (-t
192.168.3.128), instruindo-o a enviar pacotes destinados ao servidor (192.168.3.2) para o
endereco MAC do atacante.

Figura 15 — Ataque de ARP spoofing no Raspebrry Pi

> sudo arpspoof -i enp2s@ -t 192.168.3.128 192.168.3.2

98:83:89:¢c7:26:67 2c:cf:67:47:a5:ef 0806 42: arp reply is-at 98:83:89:c7:26:67
: :cf:67:47:a5:ef 0806 42: arp reply is-at 98:83:89:c7:26:67

126:67 2c:cf:67:47:a5:ef 0806 42: arp reply is-at 98:83:89:c7:26:67
98:83:89:c7:26:67 2c:cf:67:47:a5:ef 0806 42: arp reply is-at 98:83:89:c7:26:67

Fonte: Imagem do Autor

sudo arpspoof -i enp2s0 -t 192.168.3.128 192.168.3.2

Comando 1: Envenenando o Raspberry Pi

sudo: Permite executar o comando com privilégios de administrador.

arpspoof: E onome do comando que executa o ataque de envenenamento de cache ARP
(ARP Spoofing).

-i enp2s0: Define a interface de rede que serd usada para enviar os pacotes ARP falsi-

ficados.
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-t 192.168.3.128: Define o IP do target (alvo) que serd envenenado (neste caso, o
Raspberry P1i).

192.168.3.2: Define o endereco IP que o atacante ird personificar (neste caso, o Servi-
dor).

Simultaneamente, a Figura 16 documenta o envenenamento do servidor (-t 192.168.3.2),
instruindo-o a enviar as respostas destinadas ao Raspberry Pi (192.168.3.128) também
para o atacante. Com estes dois comandos, o atacante se posicionou com sucesso como o

intermediario de toda a comunicagao.

Figura 16 — Ataque de Arpspoofing no Servidor

> sudo arpspoof -i enp2s® -t 192.168.3.2 192.168.3.128

[sudo] senha para luka:
:83:89:¢7:26: :d5:5e:f5:64: H reply

reply
reply
reply
reply
reply

Fonte: Imagem do Autor

sudo arpspoof -i enp2s0 -t 192.168.3.2 192.168.3.128

Comando 2: Envenenando o Servidor

sudo: Permite executar o comando com privilégios de administrador.

arpspoof: E onome do comando que executa o ataque de envenenamento de cache ARP
(ARP Spoofing).

-i enp2s0: Define a interface de rede que serd usada para enviar os pacotes ARP falsi-

ficados.

-t 192.168.3.2: Define o IP do target (alvo) que serd envenenado (neste caso, o Rasp-
berry Pi).

192.168.3.128: Define o endereco IP que o atacante ird personificar (neste caso, o

Servidor).

Com o tréafego interceptado, os dados do sistema seguro foram analisados. A Figura
17 exibe o payload capturado do cliente. Diferentemente do Cenario 1, o contetido da
placa (“BRA2E19”) nao é visivel. Em seu lugar, observa-se um objeto JSON contendo a
chave de sessdo criptografada, o vetor de inicializagdo (nonce), a tag de autenticacao e o

payload_cifrado, que é uma sequéncia de caracteres codificados em Base64.
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Figura 17 — Trafego criptografado pela criptografia hibrida - payload do cliente

cifrada

Member: tag

cifrado

Fonte: Imagem do Autor

Da mesma forma, a Figura 18 mostra que a resposta do servidor também estd
cifrada, ocultando se a placa foi autorizada ou nao.

Figura 18 — Trafego criptografado pela criptografia hibrida - payload do servidor

w Object
p Member:
p Member: pay citrado
w Member: tag

[Path with

[Member with

String

Key: tag

Fonte: Imagem do Autor

Estas evidéncias comprovam que a solucao foi eficaz em garantir a Confidenci-
alidade e a Integridade. O atacante nao consegue ler o conteido (confidencialidade) e
qualquer alteragdo no texto cifrado invalidaria a tag de autenticacdo gerada pelo AES-

GCM, fazendo com que o servidor rejeitasse o pacote (integridade).

No entanto, é importante destacar o custo da seguranca observado nesta andlise.
Ao comparar o tamanho do pacote HTTP no Cendrio 1 (Figura 14), que continha apenas
um JSON simples e leve, com o pacote do Cendrio 2 (Figura 17), nota-se um aumento
significativo no tamanho do payload (overhead). Esse aumento deve-se a necessidade de
transmitir metadados adicionais de seguranca, especialmente a chave de sessao AES crip-

tografada com RSA de 2048 bits, que ocupa um espago consideravel, além do nonce e da
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tag. Esse incremento no consumo de banda é o compromisso (trade-off) necessario para

assegurar a protecao dos dados em um meio nao confiavel.

5.3 Resultados do Cenario 3: Ataque DoS

O ultimo experimento avaliou a vulnerabilidade de Disponibilidade. A Figura 19
estabelece a linha de base, mostrando o Raspberry Pi em operagao normal com carga de
CPU estavel.

Figura 19 — Raspberry Pi e a aplicagao operando normalmente

21 £02::2 ip6-allrouters ip6-loopback  raspberrypi
Tasks: 26, 15 thr ; 1 running £02::1 ip6-allnodes  ip6-localhost localhost

Load average: 0.29 0.11 luka@raspberrypi:~/cliente-borda $ source venv/bin/activate

Uptime: 00:08:30 (venv) luka@raspberrypi:~/cliente-borda $ python cliente_borda.py

Chave piiblica do servidor carregada.
Tentando conectar a webcam USB..
Webcam conectada!
Sistema com busca por autorizacdo iniciado...
Servidor de streaming iniciado. Acesse http://192.168.6.166:8000/video_feed
PID USER VIRT RES SHR S CPUSTMEMS E+ Command * Serving Flask app 'cliente_borda’
704 Lluka 810M 110M 45116 S 52.7 1 9 python cliente_borda. p| * Debug mode: off
715 luka 2 810M 110M 45116 R 32.7 2.9 0 7 python cliente_borda.p
710 luka 2 810M 110M 45116 . 9 0 0 python cliente_borda.p
712 luka 2 810M 110M 45116 . .9 0:14.57 python cliente_borda.p | * Running on all addresses (0.0.0.0)
713 luka 2 810M 110M 45116 2 .9 0:14.45 python cliente_borda.p | * Running on http://127.0.0.1:8000
714 luka 2 810M 110M 45116 . .9 0:14.12 python cliente_borda.p | * Running on http://192.168.7.65:8000
468 2 7888 3592 2696 . .1 0:00.96 avahi-daemon: running |Press CTRL+C to quit
1 2 164M 11152 8388 .3 0:00.97 /sbin/init
219 6292 .2 0:00.19 /lib/systemd/systemd-j | [GATILHO DISPARADO] Buscando por placa autorizada...
2 316 4268 .2 0:00.21 /lib/systemd/systemd-u | Nenhuma placa reconhecida nos frames capturados.
8 5004 .1 0:00.07 /usr/libexec/bluetooth | 192.168.7.1 - - [25/Jun/2025 02:30:28] “GET /video_feed HTTP/1.1" 200 -
56 2328 .1 0:00.00 /usr/sbin/cron -f
3316 .1 0:00.20 /usr/bin/dbus-daemon -

Fonte: Imagem do Autor

Em seguida, o ataque SYN Flood foi iniciado usando a ferramenta hping3, con-

forme demonstrado na Figura 20, registrando o envio massivo de milhoes de pacotes.

Figura 20 — Terminal do atacante executando o ataque com o hping3

sudo hping3 --flood -S -p 8000 192.168.7.65
HPING 192.168.7.65 (wlp3s@ 192.168.7.65): S set, 40 headers + 0 data bytes
hping in flood mode, no replies will be shown
2G
--- 192.168.7.65 hping statistic ---

8841362 packets tramitted, @ packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

A

Fonte: Imagem do Autor

O comando utilizado é detalhado abaixo:

sudo hping3 --flood -S -p 8000 192.168.7.65

Comando 3: Ataque DoS (SYN Flood) ao Raspberry Pi

sudo: Permite executar o comando com privilégios de administrador.

hping3: E o nome da ferramenta, um gerador e analisador de pacotes de rede utilizado

para testes de seguranca.
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-flood: Instrui a ferramenta a enviar pacotes o mais rapido possivel (modo “inunda-

¢ao”), sem aguardar por respostas.

-S: Define o flag SYN (de sincronizagao) no cabegalho do pacote TCP, caracterizando o
ataque como um SYN Flood.

-p 8000: Define a porta de destino do ataque (neste caso, a porta 8000, onde o servigo

de streaming de video do cliente estava a ser executado).

192.168.7.65: Define o endereco IP do alvo que receberd a inundacao de pacotes (neste

caso, o Raspberry Pi).

A Figura 21 documenta o impacto imediato no dispositivo. O painel htop mostra
um aumento significativo na carga média (Load Average para 1.12), indicando sobrecarga
no processamento de interrupgoes de rede. O resultado critico é observado no log da

aplicagdo, que passa a registrar erros sistematicos de “[Errno 111] Connection refused”.

Figura 21 — Raspberry Pi durante o ataque de SYN Flood

Testando placa (criptografado): EDU1000...
Tasks: 26, 14 thr ; 1 running Erro durante a criptografia ou comunicacdo: HTTPConnectionPool(host='192.168.4.25', port=
Load average: 0.73 0.33 5000): Max retries exceeded with url: /verificar_placa (Caused by NewConnectionError('<ur
Uptime: 00:12:51 11ib3.connection.HTTPConnection object at Ox7f6dffa610>: Failed to establish a new connec

tion: [Errno 111] Connection refused'))

Nenhuma das placas lidas corresponde a um veiculo autorizado.

[GATILHO DISPARADO] Buscando por placa autorizada...
Leituras obtidas: ['DAM1120']
VIRT RES SHR S CPU%YMEM% TIME+ Command Testando placa (criptografado): DAM112e...
810M 113M 45748 S 22.1 3 K AL A TN TIL LY | Erro durante a criptografia ou comunicacdo: HTTPConnectionPool(host='192.168.4.25', port=
810M 113M 45748 R . python cliente_borda.p |5000): Max retries exceeded with url: /verificar_placa (Caused by NewConnectionError('<ur
810M 113M 45748 R . 0:31.85 python cliente_borda.p |1lib3.connection.HTTPConnection object at 0x7f6d231b50>: Failed to establish a new connec
810M 113M 45748 R . 0:31.86 python cliente_borda.p |tion: [Errno 111] Connection refused'))
810M 113M 45748 R .0 3.0 0:31.08 python cliente_borda.p | Nenhuma das placas lidas corresponde a um veiculo autorizado.
10528 3900 3004 R . .1 0:02.62 htop
164M 11152 8388 .3 0:00.97 /sbin/init [GATILHO DISPARADO] Buscando por placa autorizada...
21960 7316 6292 .2 0:00.19 /lib/systemd/systemd-j |Nenhuma placa reconhecida nos frames capturados.
26428 6316 4268 .2 0:00.21 /lib/systemd/systemd-u
3592 2696 .1 0:01.28 avahi-daemon: running | [GATILHO DISPARADO] Buscando por placa autorizada...
5004 .1 0:00.07 /usr/libexec/bluetooth |Nenhuma placa reconhecida nos frames capturados.
2328 .1 0:00.00 /usr/sbin/cron -f
6 3316 .1 0:00.21 /usr/bin/dbus-daemon —

Fonte: Imagem do Autor

Este experimento evidenciou uma vulnerabilidade critica na Disponibilidade. O
subsistema de rede do Raspberry Pi foi saturado, exaurindo o backlog de conexoes e
impedindo o estabelecimento de novas conexdes legitimas, paralisando efetivamente o
servigo. Para mitigar este cenario em trabalhos futuros e fortalecer a disponibilidade,
recomenda-se a implementagao de regras de firewall (como iptables) diretamente no
dispositivo de borda para limitar a taxa de novas conexdes (rate limiting) ou o uso de
mecanismos de filtragem de pacotes de alto desempenho no kernel, como o eXpress Data
Path (XDP), para descartar trafego malicioso antes que ele consuma recursos significativos

do sistema.
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6 CONCLUSAO

Este trabalho alcancou seu objetivo geral de avaliar experimentalmente a seguranca
em Computacao de Borda, validando a eficacia da criptografia hibrida na protecao do fluxo
de dados. Em relacao aos objetivos especificos, o protétipo utilizando Raspberry Pi foi
implementado com sucesso, permitindo a simulagao realista de um cenéario de controle
de acesso. A analise de vulnerabilidade confirmou, por meio de interceptacao passiva, a
exposicao critica de dados em redes inseguras. A implementacao da criptografia hibrida
mitigou esse risco, garantindo a confidencialidade e integridade das informagoes. Por fim,
os testes de estresse demonstraram as limitacoes de disponibilidade do dispositivo de

borda frente a ataques de negacao de servigo

A execugao do Cendrio 1 (Inseguro) forneceu evidéncias claras de falhas de con-
fidencialidade e integridade, onde os dados sensiveis (placas de veiculos) foram intercep-
tados e lidos em texto puro. Para solucionar esta vulnerabilidade, a implementagao de
uma criptografia hibrida (AES+RSA), detalhada na metodologia, foi validada no Cenério
2. Os resultados comprovaram que a solucao foi eficaz, tornando os dados interceptados
indecifraveis e garantindo a seguranca do fluxo de dados nos dois sentidos (requisigao e

resposta) contra adulteragdo e espionagem.

Adicionalmente, a pesquisa exp6s uma segunda vulnerabilidade critica, investigada
no Cenario 3. Foi demonstrado que a disponibilidade do dispositivo de borda (Raspberry
Pi), por ser um hardware de recursos limitados, é um vetor de ataque distinto. Um ataque
DoS do tipo SYN Flood foi capaz de saturar os recursos do dispositivo e paralisar a apli-
cagdo, provando que a seguranca de borda deve ir além da criptografia. Como limitagoes,
este estudo focou na validagao funcional da criptografia sem uma andlise quantitativa
do overhead de desempenho (laténcia/CPU) e ndo implementou contramedidas para o

ataque DoS.

Para trabalhos futuros, recomenda-se a realizacao dessa analise de desempenho da
criptografia, a implementacao e teste de mecanismos de mitigacao de DoS na “borda”
(como iptables) e a investigacdo de métodos escaldveis para o gerenciamento de chaves
em um ambiente com miultiplos dispositivos. Conclui-se que a Computacao de Borda exige
uma estratégia de seguranca deliberada, e que a criptografia hibrida é uma solugao pratica

e eficaz para proteger a confidencialidade e a integridade dos dados gerados por ela.
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